1. AKÇİN, A., & AKÇİN, T.A. (2019). Protective effects of humic acid against chromium stress in wheat (Triticum aestivum L. cv. Delabrad-2). Journal of International Environmental Application and Science, 14(2), 50-58.
- Alashti, S.R., Bahmanyar, M.A., & Abadi, Z.A. (2013). Changes in soil physical properties and concentrations of lead and chromium in spinach affected by enriched municipal compost. Journal of Science and Technology of Agriculture and Natural Resources, 17(63), 1-11. (In Persian with English abstract)
3. Aldmour, S.T., Burke, I.T., Bray, A.W., Baker, D.L., Ross, A.B., Gill, F.L., Cibin, G., Ries, M.E., & Stewart, D. I. (2019). Abiotic reduction of Cr(VI) by humic acids derived from peat and lignite: kinetics and removal mechanism. Environmental Science and Pollution Research, 26(5), 4717–4729. https://doi.org/10.1007/s11356-018-3902-1
- Alfaro, M.R., Ugarte, O.M., Lima, L.H.V., Silva, J.R., da Silva, F.B.V., da Silva Lins, S.A., & do Nascimento, C.W.A. (2022). Risk assessment of heavy metals in soils and edible parts of vegetables grown on sites contaminated by an abandoned steel plant in Havana. Environmental Geochemistry and Health, 1-14.
- Ali, S., Bharwana, S.A., Rizwan, M., Farid, M., Kanwal, S., Ali, Q., Ibrahim, M., Gill, R.A., & Khan, M.D. (2015). Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum) through lowering of Cr uptake and improved antioxidant defense system. Environmental Science and Pollution Research, 22(14), 10601–10609. https://doi.org/10.1007/s11356-015-4271-7
- Banks, M.K., Schwab, A.P., & Henderson, C. (2006). Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62(2), 255-264.
- Bremner, J.M. (1996). Total nitrogen. p.1085-1122. In : L. Sparks et al. (ed.) Methods of Soil Analysis. Part 3, SSSA, ASA, Madison,WI.
- Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465.https://doi.org/10.2134/agronj1962.00021962005400050028x
- Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491-499. https://doi.org/10.2136/sssaj2001.652491x
- Chen, S.Y., Huang, S.W., Chiang, P.N., Liu, J.C., Kuan, W.H., Huang, J.H., Hung, J.T., Tzou, Y.M., Chen, C.C., & Wang, M.K. (2011). Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction. Journal of Hazardous Materials, 197, 337–344. https://doi.org/10.1016/j.jhazmat.2011.09.091
- Christou, A., Georgiadou, E.C., Zissimos, A.M., Christoforou, I.C., Christofi, C., Neocleous, D., Dalias, P., & Fotopoulos, V. (2021a). Uptake of hexavalent chromium by Lactuca sativa and Triticum aestivum plants and mediated effects on their performance, linked with associated public health risks. Chemosphere, 267, 128912. https://doi.org/10.1016/j.chemosphere.2020.128912
- Christou, A., Georgiadou, E.C., Zissimos, A.M., Christoforou, I.C., Christofi, C., Neocleous, D., Dalias, P., Ioannou, A., & Fotopoulos, V. (2021b). Uptake of hexavalent chromium by tomato (Solanum lycopersicum) plants and mediated effects on their physiology and productivity, along with fruit quality and safety. Environmental and Experimental Botany, 189, 104564. https://doi.org/10.1016/j.envexpbot.2021.104564
- Dhal, B., Thatoi, H.N., Das, N.N., & Pandey, B.D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. Journal of Hazardous Materials, 250–251, 272–291. https://doi.org/10.1016/j.jhazmat.2013.01.048
- Dias, M.C., Moutinho-Pereira, J., Correia, C., Monteiro, C., Araújo, M., Brüggemann, W., & Santos, C. (2016). Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation? Environmental Science and Pollution Research, 23(15), 15627–15637. https://doi.org/10.1007/s11356-016-6735-9
- Ertani, A., Mietto, A., Borin, M., & Nardi, S. (2017). Chromium in Agricultural Soils and Crops: A Review. Water, Air, and Soil Pollution, 228(5). https://doi.org/10.1007/s11270-017-3356-y
- Sauerbeck, D.R. (1991). Plant element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water, Air, and Soil Pollution, 57, 227-237.
- Gill, R.A., Zang, L., Ali, B., Farooq, M.A., Cui, P., Yang, S., Ali, S., & Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus Chemosphere, 120, 154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029
- Huang, S.W., Chiang, P.N., Liu, J.C., Hung, J.T., Kuan, W.H., Tzou, Y.M., Wang, S.L., Huang, J.H., Chen, C.C., Wang, M.K., & Loeppert, R.H. (2012). Chromate reduction on humic acid derived from a peat soil - Exploration of the activated sites on HAs for chromate removal. Chemosphere, 87(6), 587–594. https://doi.org/10.1016/j.chemosphere.2012.01.010
- Hou, J., Liu, G.N., Xue, W., Fu, W.J., Liang, B.C., & Liu, X.H. (2014). Seed germination, root elongation, root‐tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo‐aquic soil. Environmental Toxicology and Chemistry, 33(3), 671-676.https://doi.org/10.1002/etc.2489
- Jahanbakhshi, S., Rezaei, M.R., & Sayyari-Zahan, M.H. (2014). Study of phytoremediation of soil contaminated by cadmium and chromium and their bio-accumulation in spinach plant (Spinacia oleracea). Journal of Natural Environment, 66(3). (In Persian with English abstract)
- Janoš, P., Hůla, V., Bradnová, P., Pilařová, V., & Šedlbauer, J. (2009). Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents. Chemosphere, 75(6), 732–738. https://doi.org/10.1016/j.chemosphere.2009.01.037
- Kalčíková, G., Zupančič, M., Jemec, A., & Žgajnar Gotvajn, A. (2016). The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor. Chemosphere, 147, 311–317. https://doi.org/10.1016/j.chemosphere.2015.12.090
- Kim, I.S., Kang, K.H., Johnson-Green, P., & Lee, E.J. (2003). Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environmental Pollution, 126(2), 235-243.
- Li, Y., Wang, W., Zhou, L., Liu, Y., Mirza, Z.A., & Lin, X. (2017). Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Chemosphere, 169, 131–138. https://doi.org/10.1016/j.chemosphere.2016.11.060
- Liu, X., Gu, S., Yang, S., Deng, J., & Xu, J. (2021). Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Science of the Total Environment, 779, 146438. https://doi.org/10.1016/j.scitotenv.2021.146438
- Loeppert, R.H., & Suarez, D.L. (1996). Carbonate and gypsum. Methods of soil analysis: Part 3 chemical methods, 5, 437-474
- Ma, J., Lv, C., Xu, M., Chen, G., Lv, C., & Gao, Z. (2016). Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environmental Science and Pollution Research, 23(2), 1768–1778. https://doi.org/10.1007/s11356-015-5439-x
- Oliveira, H. (2012). Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany, 2012, 1–8. https://doi.org/10.1155/2012/375843
- Quevauviller, P., Lachica, M., Barahona, E., Gomez, A., Rauret, G., Ure, A., & Muntau, H. (1998). Certified reference material for the quality control of EDTA-and DTPA-extractable trace metal contents in calcareous soil (CRM 600). Fresenius' Journal of Analytical Chemistry, 360, 505-511.
- Qureshi, A.S., Hussain, M.I., Ismail, S., & Khan, Q.M. (2016). Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere, 163, 54-61.
- Park, J.H. (2020). Contrasting effects of Cr (III) and Cr (VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation. Environmental Pollution, 266, 115073.
- Raptis, S., Gasparatos, D., Economou-Eliopoulos, M., & Petridis, A. (2018). Chromium uptake by lettuce as affected by the application of organic matter and Cr(VI)-irrigation water: Implications to the land use and water management. Chemosphere, 210(Vi), 597–606. https://doi.org/10.1016/j.chemosphere.2018.07.046
- Riaz, M., Yasmeen, T., Arif, M.S., Ashraf, M.A., Hussain, Q., Shahzad, S.M., Rizwan, M., Mehmood, M.W., Zia, A., Mian, I.A., & Fahad, S. (2019). Variations in morphological and physiological traits of wheat regulated by chromium species in long-term tannery effluent irrigated soils. Chemosphere, 222, 891–903. https://doi.org/10.1016/j.chemosphere.2019.01.170
- Richards, L.A. (Ed.). (1954). Diagnosis and improvement of saline and alkali soils(No. 60). US Government Printing Office.
- Rutigliano, F.A., Marzaioli, R., De Crescenzo, S., & Trifuoggi, M. (2019). Human health risk from consumption of two common crops grown in polluted soils. Science of the Total Environment, 691, 195–204. https://doi.org/10.1016/j.scitotenv.2019.07.037
- Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782–1806. https://doi.org/10.1080/00958972.2011.583646
- Sauerbeck, D.R. (1991). Plant element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water, Air, and Soil Pollution, 57, 227-237.
- Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., & Rashid, M.I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074
- Shaker, M.A., & Albishri, H.M. (2014). Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid. Chemosphere, 111, 587–595. https://doi.org/10.1016/j.chemosphere.2014.04.088
- Shanker, A.K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753. https://doi.org/10.1016/j.envint.2005.02.003
- Singh, H.P., Mahajan, P., Kaur, S., Batish, D.R., & Kohli, R.K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254. https://doi.org/10.1007/s10311-013-0407-5
- Sinha, V., Pakshirajan, K., & Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: An overview. Journal of Environmental Management, 206, 715–730. https://doi.org/10.1016/j.jenvman.2017.10.033
- Tüfenkçi, Ş., Türkmen, Ö., Sönmez, F., Erdinç, Ç., & Şensoy, S. (2006). Effects of humic acid doses and aplication times on the plant growth, nutrient and heavy metal contents of lettuce grown on sewage sludge-applied soils. Fresenius Environmental Bulletin, 15(4), 295–300.
- Valdrighi, M.M., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., & Vallini, G. (1996). Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: A comparative study. Agriculture, Ecosystems and Environment, 58(2–3), 133–144. https://doi.org/10.1016/0167-8809(96)01031-6
- Wakeel, A., & Xu, M. (2020). Chromium morpho-phytotoxicity. Plants, 9(5), 564. https://doi.org/10.3390/plants9050564
- Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
- Wang, C., Gu, L., Ge, S., Liu, X., Zhang, X., & Chen, X. (2019). Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr (VI) co-contaminated soil. Environmental Technology, 40(18), 2345-2353. https://doi.org/ 10.1080/09593330.2018.1441328
- Wu, M., Li, G., Jiang, X., Xiao, Q., Niu, M., Wang, Z., & Wang, Y. (2017). Non-biological reduction of Cr(VI) by reacting with humic acids composted from cattle manure. RSC Advances, 7(43), 26903–26911. https://doi.org/10.1039/c6ra28253a
- Yang, Z., Zhang, X., Jiang, Z., Li, Q., Huang, P., Zheng, C., Liao, Q., & Yang, W. (2021). Reductive materials for remediation of hexavalent chromium contaminated soil – A review. Science of the Total Environment, 773. https://doi.org/10.1016/j.scitotenv.2021.145654
- Zhang, J., Yin, H., Wang, H., Xu, L., Samuel, B., Chang, J., Liu, F., & Chen, H. (2019). Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction. Science of the Total Environment, 651, 2975–2984. https://doi.org/10.1016/j.scitotenv.2018.10.165
- Zhao, Y., Hu, C., Wang, X., Qing, X., Wang, P., Zhang, Y., Zhang, X., & Zhao, X. (2019). Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicology and Environmental Safety, 173, 314–321. https://doi.org/10.1016/j.ecoenv.2019.01.090
|