- Ahanger, M.A., Akram, N.A., Ashraf, M., Alyemeni, M.N., Wijaya, L., & Ahmad, P. (2017). Signal transduction and biotechnology in response to environmental stresses. Biologia Plantarum, 61(3), 401-416. https://doi.org/10.1007/s10535-016-0683-6
- Arzani, K., & Arji, I. (2000). Response of young olive plants cv Local Roghani Roodbar to water stress and deficit irrigation. Seed and Plant, 16(1), 99-109. (In Persian)
- Barzegar, K., Yadollahi, A., Imani, A., & Ahmadi, N. (2012). Responses to drought stress of almond cultivars and genotypes grown under field conditions. International Journal of Agriculture: Research and Review, 2(3), 205-210.
- Bhusal, N., Han, S.G., & Yoon, T.M. (2019). Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus× domestica). Scientia Horticulturae, 246, 535-543. https://doi.org/10.1016/j.scienta.2018.11.021
- Bodner, G., Nakhforoosh, A., & Kaul, H.P. (2015). Management of crop water under drought: A review. Agronomy for Sustainable Development, 35(2), 401-442. https://doi.org/10.1007/s13593-015-0283-4
- Bogati, K., & Walczak, M. (2022). The Impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy, 12, 189. https://doi.org/10.3390/agronomy12010189
- Chai, Q., Gan, Y., Zhao, C., Xu, H.L., Waskom, R.M., Niu, Y., & Siddique, K.H. (2016). Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for Sustainable Development, 36, 3. https://doi.org/10.1007/s13593-015-0338-6
- Condon, A.G. (2020). Drying times: plant traits to improve crop water use efficiency and yield. Journal of Experimental Botany, 71(7), 2239-2252. https://doi.org/10.1093/jxb/eraa002
- De Herralde, F. (2000). Integral study of the eco-physiological response to water stress: characterization of the almond varieties. Nucis–Newsletter, 9, 20-21.
- De Herralde, F., Savé, R., Biel, C., Batlle, I., & Vargas, F.J. (2001). Differences in drought tolerance in two almond cultivars:'Lauranne'and'Masbovera'. Cahiers Options Méditerranéennes, 56, 149-154.
- Emami, (1996). Plant decomposition methods. Vol. 1. Technical leaflet No. 982. Soil and Water. Research Institute, Tehran, Iran (In Persian)
- Fathi, H., Amiri, M., Imani, A., Nikbakht, J., & Hajilou, J. (2019). Investigation on the changes of some biochemical traits of almond genotypes leaves under drought stress on the GN15 rootstock. Journal of Plant Process and Function, 8(29), 15-30. (In Persian)
- Fulton, A., Grant, J., Buchner, R., & Connell, J. (2014). Using the pressure chamber for irrigation management in walnut, almond and prune. http://dx.doi.org/10.3733/ucanr.8503
- Gradzıel, T.M., Martınez-Gomez, P., Dıcenta, F., & Kester, D.E. (2001). The utilization of related Prunus species for almond variety improvement. Journal-American Pomological Society, 55(2), 100-108.
- Haas, J.C., Vergara, A., Serrano, A.R., Mishra, S., Hurry, V., & Street, N.R. (2021). Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. Tree Physiology, 41(7), 1230-1246. https://doi.org/10.1093/treephys/tpaa178
- Isaakidis, A., Sotiropoulos, T., Almaliotis, D., Therios, I., & Stylianidis, D. (2004). Response to severe water stress of the almond (Prunus amygdalus)’Ferragnès’ grafted on eight rootstocks. New Zealand Journal of Crop and Horticultural Science, 32(4), 355-362.
- Jiménez, S., Dridi, J., Gutiérrez, D., Moret, D., Irigoyen, J.J., Moreno, M.A., & Gogorcena, Y. (2013). Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 33, 1061-1075. https://doi.org/10.1093/treephys/tpt074
- Karimi, S., Yadollahi, A., Arzani, K., Imani, A., & Aghaalikhani, M. (2015). Gas-exchange response of almond genotypes to water stress. Photosynthetica, 53(1), 29-34. https://doi.org/10.1007/s11099-015-0070-0
- Khoyerdi, F.F., Shamshiri, M.H., & Estaji, A. (2016). Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. Scientia Horticulturae, 198, 44-51. https://doi.org/10.1016/j.scienta.2015.11.028
- Kim, J., Kim, K.S., Kim, Y., & Chung, Y.S. (2020). A short review: Comparisons of high-throughput phenotyping methods for detecting drought tolerance. Scientia Agricola, https://doi.org/10.1590/1678-992X-2019-0300
- Lindsay, W.L, & Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
- Marschner, H. (2011). Marschner’s Mineral Nutrition of Higher Plants. San Diego, CA, Academic Press.
- Martínez-García, P.J., Hartung, J., Pérez de los Cobos, F., Martínez-García, P., Jalili, S., Sánchez-Roldán, J.M., Rubio, M., Dicenta, F., & Martínez-Gómez, P. (2020). Temporal response to drought stress in several Prunus rootstocks and wild species. Agronomy, 10, 1383. https://doi.org/10.3390/agronomy10091383
- Méndez‐Toribio, M., Ibarra‐Manríquez, G., Paz, H., & Lebrija‐Trejos, E. (2020). Atmospheric and soil drought risks combined shape community assembly of trees in a tropical dry forest. Journal of Ecology, 108(4), 1347-1357. https://doi.org/10.1111/1365-2745.13355
- Mousavi, S.A., Tatari, M., Mehnatkesh, A., & Haghighati, B. (2009). Vegetative growth response of young seedlings of five almond cultivars to water deficit. Seed and Plant Improvement Journal, 25-1, 551-567. (In Persian)
- Palasciano, M., Logoluso, V., & Lipari, E. (2013). Differences in drought tolerance in almond cultivars grown in Apulia region (Southeast Italy). In: VI International Symposium on Almonds and Pistachios 1028: 319-324.
- Parvaneh, T., & Afshari, H. (2013). Comparative study of the response of different almond rootstocks to water stress. International Journal of Plant Production, 4, 2244-2250.
- Sorkheh, K., Shiran, B., Khodambshi, M., Rouhi, V., & Ercisli, S. (2011). In vitro assay of native Iranian almond species (Prunus spp.) for drought tolerance. Plant Cell, Tissue and Organ Culture, 105(3), 395-404.
- Tankari, M., Wang, C., Ma, H., Li, X., Li, L., Soothar, R.K., Cui, N., Zaman-Allah, M., Hao, W., Liu, F., & Wang, Y. (2021). Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agricultural Water Management, 245, 106565. https://doi.org/10.1016/j.agwat.2020.106565
- Toscano, S., Ferrante, A., & Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5(1), 6. https://doi.org/10.3390/horticulturae5010006
- Treder, W., Konopacki, P., & Mika, A. (1996). Duration of water stress and its influence on the growth of nursery apple trees planted in containers under plastic tunnel conditions. In: II International Symposium on Irrigation of Horticultural Crops 449: 541-544.
- Yadollahi, A., Arzani, K., Ebadi, A., Wirthensohn, M., & Karimi, S. (2011). The response of different almond genotypes to moderate and severe water stress in order to screen for drought tolerance. Scientia Horticulturae, 129, 403-413. https://doi.org/10.1016/j.scienta.2011.04.007
- Zokaee Khosroshahi, K. (2013). Investigation of drought tolerance in five Iranian almond species based on the important morphological and physiological markers(Doctoral dissertation, Thesis for the Degree of Doctor of Philosophy in Horticulture Faculty of Agriculture Department of Horticultural Sciences of Bu-Ali Sina University).
|