- Alvaro-Fuentes, J., Lopez, M.V., Arrue, J.L., Moret, D., & Paustian, K. (2009). Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: testing the Century model. Agriculture, Ecosystems and Environment 134(3-4): 211-217. https://doi.org/10.1016/j.agee.2009.07.001.
- Anderson, T.H. (2003). Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems and Environment 98: 285-293. https://doi.org/10.1016/S0167-8809(03)00088-4.
- Azad, B., & Afzali, S.F. (2019). Evaluation of two soil carbon models performance using measured data in semi-arid rangelands of Bajgah, Fars province. Iranian Journal of Soil and Water Research 50: 819-835. (In Persian with English abstract). 10.22059/ijswr.2018.264873.668001.
- Babaeian, I., & Kouhi, M. (2012). Agroclimatic indices assessment over some selected weather stations of Khorasan Razavi province under climate change scenarios. Journal of Water and Soil 26: 953-967. (In Persian with English abstract).
- Barančíková, G., Halas, J., Guttekova, M., Makovnikova, J., Novakova, M., Skalský, R., & Tarasovičová, Z. (2010). Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia. Soil and Water Research 5: 1-9.
- Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47: 151-163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x.
- Baveye, P.C., Schnee, L.S., Boivin, P., Laba, M., & Radulovich, R. (2020). Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Frontiers in Environmental Science 8: 579904. https://doi.org/10.3389/fenvs.2020.579904.
- Bleuler, M., Farina, R., Francaviglia, R., di Bene, C., Napoli, R., & Marchetti, A. (2017). Modelling the impacts of different carbon sources on the soil organic carbon stock and CO2 emissions in the Foggia province (Southern Italy). Agricultural Systems 157: 258-268. https://doi.org/10.1016/j.agsy.2017.07.017.
- Bolinder, M., Janzen, H., Gregorich, E., Angers, D., & VandenBygaart, A. (2007). An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems and Environment 118: 29-42. https://doi.org/10.1016/j.agee.2006.05.013.
- Bond-Lamberty, B., & Thomson, A. (2010). Temperature-associated increases in the global soil respiration record. Nature 464: 579-582. https://doi.org/10.1016/j.agee.2006.05.013.
- Chicco, D., Warrens, M.J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7: e623. https://doi.org/10.7717/peerj-cs.623.
- Borrelli, L., Colecchia,S., Troccoli, A., Caradonna, S., Papini, R., Ventrella, D., Dell Abate, M, T., & Farina, R. (2011). Effectiveness of the GAEC standard of cross compliance crop rotations in maintaining organic matter levels in soil. Italian Journal of Agronomy 6: 57-62. https://doi.org/10.4081/IJA.2011.6.S1.E8.
- Coleman, K., & Jenkinson, D. (1996). RothC-26.3-A Model for the turnover of carbon in soil. In "Evaluation of soil organic matter models", pp. 237-246. Springer. https://doi.org/10.1007/978-3-642-61094-3_17.
- Coleman, K., & Jenkinson, D. (2014). RothC-A Model for the Turnover of Carbon in Soil-Model description and users guide. Rothamsted Research, Harpenden, UK.
- Coleman, K., Jenkinson, D., Crocker, G., Grace, P., Klir, J., Körschens, M., Poulton, P., & Richter, D. (1997). Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81: 29-44. https://doi.org/10.1016/S0016-7061(97)00079-7.
- Davidson, E.A., & Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173. http://doi.org/10.1038/nature04514.
- Diele, F., Marangi, C., & Martiradonna, A. (2021). Non-standard discrete RothC Models for doil carbon dynamics. Axioms 10: 56. https://doi.org/10.3390/axioms10020056.
- Dondini, M., Hastings, A., Saiz, G., Jones, M.B., & Smith, P. (2009). The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. Gcb Bioenergy 1: 413-425. https://doi.org/10.1111/j.1757-1707. 2010.01033.x.
- 19. Doner, H., & Lynn, W.C. (1989). Carbonate, halide, sulfate and sulfide minerals. P 279-330. In: Dixon, J. B and Weed, S. B (ed.) Minerals in environments. Second ed. Soil Science Society of Am. Madison, Wis. USA. https://doi.org/10.2136/sssabookser1.2ed.c6.
- Eswaran, H. (2000). Global carbon stock. Global climate change and pedogenic carbonates, 15-25.
- Fallahi, J., Rezvani, M.P., Nassiri, M.M., & Behdani, M. (2013). Validation of RothC model for evaluation of carbon sequestration in a restorated ecosystem under two different climatic scenarios. Journal of Water and Soil 3: 656-668. (In Persian with English abstract)
- Falloon, P., Smith, P., Coleman, K., & Marshall, S. (1998). Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biology and Biochemistry 30: 1207-1211. http://doi.10.1016/S0038-0717(97)00256-3.
- Farina, R., Coleman, K., & Whitmore, A.P. (2013). Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma 200: 18-30. https://doi.org/10.1016/j.geoderma.2013.01.021.
- Farina, R., Marchetti, A., Francaviglia, R., Napoli, R., & Di Bene, C. (2017). Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agriculture, Ecosystems and Environment 238: 128-141. https://doi.org/10.1016/j.agee.2016.08.015.
- Francaviglia, R., Baffi, C., Nassisi, A.L., Cassinari, C., & Farina, R. (2013).Use of the RothC model to simulate soil organic dynamic on a silty loam Inceptisol in northern Italy under different fertilization practices. Environmental Quality 11: 17-28. https://dx.doi.org/10.6092/issn.2281-4485/4085.
- Francaviglia, R., Coleman, K., Whitmore, A.P., Doro, L., Urracci, G., Rubino, M., & Ledda, L. (2012). Changes in soil organic carbon and climate change–Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agricultural Systems 112: 48-54. https://doi.org/10.1016/j.agsy.2012.07.001.
- Francaviglia, R., Renzi, G., Ledda, L., & Benedetti, A. (2017). Organic carbon pools and soil biological fertility are affected by land use intensity in Mediterranean ecosystems of Sardinia, Italy. Science of the Total Environment 599: 789-796. https://doi.org/10.1016/j.scitotenv.2017.05.021.
- González-Molina, L., Etchevers-Barra, J., Paz-Pellat, F., Diaz-Solis, H., Fuentes-Ponce, M., Covaleda-Ocon, S., & Pando-Moreno, M. (2011). Performance of the RothC-26.3 model in short-term experiments in Mexican sites and systems. Agricultural Science 149: 415-425. https://doi.org/10.1017/S0021859611000232.
- 2 Gorissen, A., Tietema, A., Joosten, N.N., Estiarte, M., Penuelas, J., Sowerby, A., Emmett, B.A., & Beier, C. (2004). Climate change affects carbon allocation to the soil in shrublands. Ecosystems 7: 650-661. https://doi.org/10.1007/s10021-004-0218-4.
- Guo, Y., Wang, X., Li, X., Wang, J., Xu, M., & Li, D. (2016). Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China. Scientific Reports 6: 1-10. https://doi.org/10.1038/srep36105.
- Inubushi, K., Cheng, W., Mizuno, T., Lou, Y., Hasegawa, T., Sakai, H., & Kobayashi, K. (2011). Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2 in a Japanese paddy soil. European Journal of Soil Science 62: 69-73. https://doi.org/10.1111/j.1365-2389.2010.01323.x.
- IPCC. (2021). "Climate Change Impacts, the Physical Science Basis."
- 3 Jenkinson, D.S., Harris, H.C., Ryan, J., McNeill, A.M., Pilbeam, C.J., & Colman, K. (1999). Organic matter turnover in a calcareous clay soil from Syria under a two-course cereal rotation. Soil Biology and Biochemistry 31(5): 687-693. https://doi.org/10.1016/S0038-0717(98)00157-6.
- Jordon, M.W., & Smith, P. (2022). Modelling soil carbon stocks following reduced tillage intensity: A framework to estimate decomposition rate constant modifiers for RothC-26.3, demonstrated in north-west Europe. Soil and Tillage Research 222: 105428. https://doi.org/10.1016/j.still.2022.105428.
- Kaczynski, R., Siebielec, G., Hanegraaf, M.C., & Korevaar, H. (2017). Modelling soil carbon trends for agriculture development scenarios. Geoderma 286: 104-115. https://doi.org/10.1016/j.geoderma.2016.10.026.
- Kaonga, M., & Coleman, K. (2008). Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model. Forest Ecology and Management 256: 1160-1166. https://doi.org/10.1016/j.foreco.2008.06.017.
- Kirschbaum, M.U. (1995). The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27: 753-760. https://doi.org/10.1016/0038-0717(94)00242-S.
- 3 Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: Part 1 Physical and mineralogical methods 632-662. https://doi.org/10.2136/sssabookser5.1.2ed.c26.
- Kolosz, B.W., Sohi, S.P., & Manning, D. (2019). CASPER: A modelling framework to link mineral carbonation with the turnover of organic matter in soil. Computers and Geosciences 124: 58-72. https://doi.org/10.1016/j.cageo.2018.12.012.
- Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1627. https://doi.org/10.1126/science.1097396.
- Lal, R. (2013). Soil carbon management and climate change. Carbon Management 4: 439-462. https://doi.org/10.4155/cmt.13.31.
- Lefèvre, C., Rekik, F., Alcantara, V., & Wiese, L. (2017). "Soil organic carbon: the hidden potential," Food and Agriculture Organization of the United Nations (FAO).
- Leifeld, J., Reiser, R., & Oberholzer, H. (2009). Consequences of conventional versus organic farming on soil carbon: results from a 27‐year field experiment. Agronomy 101: 1204-1218. https://doi.org/10.2134/agronj2009.0002.
- Lopez-Bellido, R.J., Fontan, J.M., Lopez-Bellido, F.J., & Lopez- Bellido, L. (2010). Carbon sequestration by tillage, rotation and nitrogen fertilization in a Mediterranean Vertisol. Agronomy 102(1): 310-318. https://doi.org/10.2134/agronj2009.0165.
- Luxmoore, R.J., Tharp, M.L., & Post, W.M. (2008). Simulated biomass and soil carbon of loblolly pine and cottonwood plantations across a thermal gradient in southeastern United States. Forest Ecology and Management 254: 291-299. https://doi.org/10.1016/j.foreco.2007.08.008.
- Martins, C.S., Macdonald, C.A., Anderson, I.C., & Singh, B.K. (2016). Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dry land ecosystems. Soil Biology and Biochemistry 100: 21-32. https://doi.org/10.1016/j.soilbio.2016.05.007.
- 4 Mansouri, M. (2000). Reconnaissance survey and land classification of Jolge rokh, Torbat-e Heydariyeh. Technical report No 1089 (In Persian).
- 4 Mondini, C., Cayuela, M.L., Sinicco, T., Fornasier, F., Galvez, A., & Sánchez-Monedero, M.A. (2017). Modification of the RothC model to simulate soil C mineralization of exogenous organic matter. Biogeosciences 14: 3274-3253. https://doi.org/10.5194/bg-14-3253-2017.
- Mondini, C., Coleman, K., & Whitmore, A. (2012). Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agriculture, Ecosystems and Environment 153: 24-32. https://doi.org/10.1016/j.agee.2012.02.020.
- Muñoz-Rojas, M., Abd-Elmabod, S.K., Zavala, L.M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: a case study in Northern Egypt. Agriculture, Ecosystems and Environment 238: 142-158. https://doi.org/10.1016/j.agee.2016.09.001.
- Navarro-Pedreño, J., Almendro-Candel, M.B., & Zorpas, A.A. (2021). The increase of soil organic matter reduces global warming, myth or reality? Science 3: 18. https://doi.org/10.3390/sci3010018.
- Niklińska, M., Maryański, M., & Laskowski, R. (1999). Effect of temperature on humus respiration rate and nitrogen mineralization: Implications for global climate change. Biogeochemistry 44: 239-257. https://doi.org/10.1007/BF00996992.
- Paul, K., Polglase, P., & Richards, G. (2003). Predicted change in soil carbon following afforestation or reforestation, and analysis of controlling factors by linking a C accounting model (CAMFor) to models of forest growth, litter decomposition and soil C turnover (RothC). Forest Ecology and Management 177: 485-501. https://doi.org/10.1016/S0378-1127(02)00454-1.
- Paustian, K., Parton, W.J., & Persson, J. (1992). Modeling soil organic matter in organic‐amended and nitrogen‐fertilized long‐term plots. Soil Science Society of America Journal 56: 476-488. https://doi.org/10.2136/sssaj1992.03615995005600020023x.
- Sakurai, G., Jomura, M., Yonemura, S., Iizumi, T., Shirato, Y., & Yokozawa, M. (2012). Inversely estimating temperature sensitivity of soil carbon decomposition by assimilating a turnover model and long-term field data. Soil Biology and Biochemistry 46: 191-199. https://doi.org/10.1016/j.soilbio.2011.11.005.
- Schimel, D.S., House, J.I., Hibbard, K.A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B.H., Apps, M.J., Baker, D., & Bondeau, A. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169-172. http://doi.org/10.1016/35102500.
- Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., & Zechmeister-Boltenstern, S. (2011). Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry 43: 1417-1425. https://doi.org/10.1016/j.soilbio.2011.03.005.
- Schmidt, M.W., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., & Manning, D.A. (2011). Persistence of soil organic matter as an ecosystem property. Nature 478: 49-56. https://doi.org/10.1038/nature10386.
- Shirato, Y., & Yokozawa, M. (2006). Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model. Soil Biology and Biochemistry 38: 812-816. https://doi.org/10.1016/j.soilbio.2005.07.008.
- Shpedt, A., Ligaeva, N., & Emelyanov, D. (2019). Transformation of soil and land resources of the Middle Siberia in the conditions of climatic changes. In "IOP Conference Series: Earth and Environmental Science", Vol. 315, pp. 052051. IOP Publishing. doi:10.1088/1755-1315/315/5/052051.
- Skjemstad, J., Spouncer, L., Cowie, B., & Swift, R. (2004). Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Soil Research 42: 79-88. https://doi.org/10.1071/SR03013.
- Smith, J., & Smith, P. (2007). "Environmental modelling: an introduction," Oxford University Press.
- Smith, J., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R.J., Montanarella, L., Rounsevell, M.D., Reginster, I., & Ewert, F. (2005). Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biology 11: 2141-2152. https://doi.org/10.1111/j.1365-2486.2005.001075.x.
- Smith, P., Fang, C., Dawson, J.J., & Moncrieff, J.B. (2008). Impact of global warming on soil organic carbon. Advances in Agronomy 97: 1-43. https://doi.org/10.1016/S0065-2113(07)00001-6.
- 6 Smith, P., Powlson, D., & Glendining, M. (1996). Establishing a European GCTE soil organic matter network (SOMNET). pp. 81-97. Springer. https://doi.org/10.1007/978-3-642-61094-3_7.
- Smith, P., Smith, J., Franko, U., Kuka, K., Romanenkov, V., Shevtova, L., Wattenbach, M., Gottschalk, P., Sirotenko, O., & Rukhovich, D. (2007). Changes in mineral soil organic carbon stocks in the croplands of European Russia and the Ukraine, 1990–2070; comparison of three models and implications for climate mitigation. Regional Environmental Change 7: 105-119. https://doi.org/10.1007/s10113-007-0028-2.
- Soil Survey Manual. (2014). Kellogg soil survey laboratory methods manual. Soil survey investigations report No 51, version 2 R Burt and soil survay staff (ed), U. S. Department of Agriculture Natural Resources conservation Service.
- Soleimani, A., Hosseini, S.M., Bavani, A.R.M., Jafari, M., & Francaviglia, R. (2017). Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests. Science of the Total Environment 599: 1646-1657. https://doi.org/10.1016/j.scitotenv.2017.05.077.
- Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., De Courcelles, V.D.R., & Singh, K. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment 164: 80-99. https://doi.org/10.1016/j.agee.2012.10.001.
- Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geographical Review 38: 55-94. https://doi.org/10.2307/210739.
- Vaghefi, S.A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., & Abbaspour, K. (2019). The future of extreme climate in Iran. Scientific Reports 9: 1-11. https://doi.org/10.1038/s41598-018-38071-8.
- Wan, Y., Lin, E., Xiong, W., & Guo, L. (2011). Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agriculture, Ecosystems and Environment 141: 23-31. https://doi.org/10.1016/j.agee.2011.02.004.
- Weihermüller, L., Graf, A., & Verecken, H. (2013). Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. European Journal of Soil Science 64: 567-575. https://doi.org/10.1111/ejss.12036.
- Xu, X., Liu, W., & Kiely, G. (2011). Modeling the change in soil organic carbon of grassland in response to climate change: Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model. Agriculture, Ecosystems and Environment 140: 372-381. https://doi.org/10.1016/j.agee.2010.12.018.
- Zimmermann, M., Leifeld, J., Schmidt, M., Smith, P., & Fuhrer, J. (2007). Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science 58: 658-667. https://doi.org/10.1111/j.1365-2389.2006.00855.x.
|