- Kanhed, S., Awasthi, S., Goel, S., Pandey, A., Sharma, R., Upadhyaya, R., Balani, K., "Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites", Ceraimcs International. 43, pp. 10442–10449, (2017).
- Kuttappan, S., Mathew, D., Nair, M. B., "Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review", International Journal of Biological Macromole. 93, pp. 1390–1401, (2016).
- Rizwan, M. Hamdi, W.J. Basirun, K. Kondoh, J. Umeda, Low pressure spark plasma sintered hydroxyapatite and Bioglass® composite scaffolds for bone tissue repair, Ceramics International, Vol. 44, pp. 23052–23062, (2018).
- Kaur, G., Kumar, V., Baino, F., Mauro, J. C., Pickrell, G., Evans, I., Bretcanu, O., "(Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges", Material Science and engineering C, pp. 109895, (2019).
- Fayyazbakhsh, F., Solati-Hashjin, M., Keshtkar, A., Shokrgozar, M. A., Dehghan, M. M., Larijani, B., "Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study", Material Science and engineering C. Vol. 76, pp. 701–714, (2017).
- Palmero, P., "Ceramic-Polymer Nanocomposites for Bone-Tissue Regeneration", Journal of Nanocomposites for Musculoskeletal Tissue Regeneration, Elsevier Ltd, pp. 331-367 (2016).
- Fayyazbakhsh, F., Solati-Hashjin, M., Shokrgozar, M. A., Bonakdar, S., Ganji, Y., Mirjordavi, N., Ghavimi, S. A., Khashayar, P., "Biological Evaluation of a Novel Tissue Engineering Scaffold of Layered Double Hydroxides (LDHs)", Key Engineering Materials, pp. 493–494, 902, (2011).
- Huh, J. T., Lee, J. U., Kim, W. J., Yeo, M., Kim, G. H., "Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration", International Journal of Biological Macromolcules. 110, pp. 488–496, (2018).
- Feng, S., He, F., Ye, J., "Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin", Material Science and Engineering C,. 82, pp. 217–224, (2018).
- Bakhtiari, L., Reza, H., Mohamad, S., Ali, M., "Investigation of biphasic calcium phosphate / gelatin nanocomposite scaffolds as a bone tissue engineering", Ceramics International, 36, pp. 2421–2426, (2010).
- Narbat, M. K., Orang, F., Hashtjin, M. S., Goudarzi, A., "Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering", Iranian Biomedical Journal, 10, No.4, Pp. 215–223, (2006).
- Luo, Yi and Wang, Zhendong and Jin, Shaoqing and Zhang, Bin and Sun, Hongmin and Yuan, Xiaohong and Yang, Weimin, "Synthesis and crystal growth mechanism of ZSM-22 zeolite nanosheets", Journal of CrystEngComm, 18, Issue. 30, pp. 5611-5615 (2016).
- Ghorbani, F., Nojehdehian, H., Zamanian, A., "Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications", Material Science and Engineering C. 69, pp. 208–220, (2016).
- Azadeh Motealleh, Siamak Eqtesadi, Fidel Hugo Perera, Antonia Pajares, Fernando Guiberteau, Pedro Miranda,
Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 64, pp. 253-261, (2016).
- , Catauro, A. Dell’Era, S., Vecchio Ciprioti, "Synthesis, structural, spectroscopic and thermoanalytical study of sol-gel derived SiO2-CaO-P2O5 gel and ceramic materials", Thermochimica Acta. Vol. 625, Pp. 20–27, (2016).
- Taherkhani, S., Moztarzadeh, F., Mozafari, M., Lot, N., "Sol – gel synthesis and characterization of unexpected rod-like crystal fi bers based on", Vol. 358, 342–348, (2012).
- Abdelghany, A.M., ElBatal, H.A., Okasha, A. et al. Compatibility and Bone Bonding Efficiency of Gamma Irradiated Hench’s Bioglass. Journal of Silicon, 10, pp. 1533–1541, (2018).
- Nabian, N., Jahanshahi, M., Mahmood, S., "Synthesis of nano-bioactive glass – ceramic powders and its in vitro bioactivity study in bovine serum albumin protein", Journal of Molecular Structure, 998, pp. 37–41, (2011).
- Faure, J., Drevet, R., Lemelle, A., Ben Jaber, N., Tara, A., El Btaouri, H., Benhayoune, H., "A new sol – gel synthesis of 45S5 bioactive glass using an organic acid as catalyst Preparation of Powder Gel", Material science and engineering C, 47, pp. 407–412, (2015).
- Rubio, F., Rubio, J., Oteo, J. L., A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS), Journal of Spectroscopy Letters, Vol. 31, pp. 199-219, (1998).
- Darvishian Haghighi, F., Mollazadeh Beidokhti, S., Tayarani Najaran, Z., Sahebian Saghi, S., "Highly improved biological and mechanical features of bioglass-ceramic/ gelatin composite scaffolds using a novel silica coverage", Ceramics International, 47, Issue 10, Part A, pp.14048-14061, (2021).
- Darvishian Haghighi, F., Mollazadeh Beidokhti, S., Sahebian Saghi, S., Tayarani Najaran, Z., "Effect of manufacturing route on microstructure and mechanical properties of calcium phosphate/gelatin-starch composite scaffold", Journal of Metallurgical engineering, Vol. 22, Issue. 2, 84-95, (2019), (In Persion).
|