Bossu, J., Gee, C., Jones, G., & Truchetet, F. (2009). Wavelet transform to discriminate between crop and weed in perspective agronomic images. Computers and Electronics in Agriculture, 65, 133-143. https://doi.org/10.1016/j.compag.2008.08.004
Chen, J., Qiang, H., Wu, J., Xu, G., Wang, Z., & Liu, X. (2020). Extracting the navigation path of a tomato-cucumber greenhouse robot based on a median point Hough transform. Computers and Electronics in Agriculture, 174, 105472. https://doi.org/10.1016/j.compag.2020.105472
Choi, K. H., Han, S. K., Han, S. H., Park, K. H., Kim, K. S., & Kim, S. (2015). Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Computers and Electronics in Agriculture, 113, 266-274. https://doi.org/10.1016/j.compag.2015.02.014
Dutta, M. K., Sengar, N., Kamble, N., Banerjee, K., Minhas, N., & Sarkar, B. (2016). Image processing based technique for classification of fish quality after cypermethrine exposure. LWT-Food Science and Technology, 68, 408-417. https://doi.org/10.1016/j.lwt.2015.11.059
Elstone, L., How, K. Y., Brodie, S., Ghazali, M. Z., Heath, W. P., & Grieve, B. (2020). High speed crop and weed identification in lettuce fields for precision weeding. Sensors, 20, 455. https://doi.org/10.3390/s20020455
Fontaine, V., & Crowe, T. (2006). Development of line-detection algorithms for local positioning in densely seeded crops. Canadian Biosystems Engineering, 48, 7.
Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., & Guijarro, M. (2012). Support vector machines for crop/weeds identification in maize fields. Expert Systems with Applications, 39, 11149-11155. https://doi.org/10.1016/j.eswa.2012.03.040
Guerrero, J. M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., & Pajares, G. (2013). Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Systems with Applications, 40, 656-664. https://doi.org/10.1016/j.eswa.2012.03.040
Han, Y., Wang, Y., & Kang, F. (2012). Navigation line detection based on support vector machine for automatic agriculture vehicle. International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), (IET): https://doi.org/10.1049/cp.2012.1237
Hemming, J., & Rath, T. (2001). PA-Precision agriculture: Computer-vision-based weed identification under field conditions using controlled lighting. Journal of Agricultural Engineering Research, 78, 233-243. https://doi.org/10.1006/jaer.2000.0639
Jiang, G., Wang, X., Wang, Z., & Liu, H. (2016). Wheat rows detection at the early growth stage based on Hough transform and vanishing point. Computers and Electronics in Agriculture, 123, 211-223. https://doi.org/10.1016/j.compag.2016.02.002
Jones, G., Gee, C., & Truchetet, F. (2009). Modeling agronomic images for weed detection and comparison of crop/weed discrimination algorithm performance. Precision Agriculture, 10, 1-15. https://doi.org/10.1007/s11119-008-9086-9
Kanagasingham, S., Ekpanyapong, M., & Chaihan, R. (2020). Integrating machine vision-based row guidance with GPS and compass-based routing to achieve autonomous navigation for a rice field weeding robot. Precision Agriculture, 21, 831-855. https://doi.org/10.1007/s11119-019-09697-z
Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. Pages b1079-b1083 vol. 1072. Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003): IEEE. https://doi.org/10.1109/AIM.2003.1225492
Kiani, S., & A. Jafari. (2012). Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. Journal of Agricultural Science and Technology, 755-765.
Kurmi, Y., Gangwar, S., Agrawal, D., Kumar, S., & Srivastava, H. S. (2021). Leaf image analysis-based crop diseases classification. Signal, Image and Video Processing, 15, 589-597. https://doi.org/10.1007/s11760-020-01780-7
Li, X., Lloyd, R., Ward, S., Cox, J., Coutts, S., & Fox, C. (2022). Robotic crop row tracking around weeds using cereal-specific features. Computers and Electronics in Agriculture, 197, 106941.
Lin, S., Jiang, Y., Chen, X., Biswas, A., Li, S., Yuan, Z., Wang, H., & Qi, L. (2020). Automatic detection of plant rows for a transplanter in paddy field using faster r-cnn. IEEE Access, 8, 147231-147240. https://doi.org/10.1109/ACCESS.2020.3015891
Mahmud, M. S. A., Abidin, M. S. Z., Mohamed, Z., Abd Rahman, M. K. I., & Iida, M. (2019). Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment. Computers and Electronics in Agriculture, 157, 488-499. https://doi.org/10.1016/j.compag.2019.01.016
Minaei, S., Mahdavian, A., & Banakar, A. (2015). Design and evaluation of a path detection algorithm in road images using Hough transform. Iranian Journal of Biosystems Engineering, 46, 85-93. (In Persian). https://doi.org/10.22059/IJBSE.2015.54340
Montalvo, M., Pajares, G., Guerrero, J. M., Romeo, J., Guijarro, M., Ribeiro, A., Ruz, J. J., & Cruz, J. (2012). Automatic detection of crop rows in maize fields with high weeds pressure. Expert Systems with Applications, 39, 11889-11897. https://doi.org/10.1016/j.eswa.2012.02.117
Palacin, J., & Martinez, D. (2021). Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments. Sensors, 21, 4763. https://doi.org/10.3390/s21144763
Ponnambalam, V. R., Bakken, M., Moore, R. J., Glenn Omholt Gjevestad, J., & Johan From, P. (2020). Autonomous crop row guidance using adaptive multi-roi in strawberry fields. Sensors, 20, 5249. https://doi.org/10.3390/s20185249
Rovira-Mas, F., Zhang, Q., Reid, J., & Will, J. (2005). Hough-transform-based vision algorithm for crop row detection of an automated agricultural vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 999-1010. https://doi.org/10.1243/095440705X34667
Tenhunen, H., Pahikkala, T., Nevalainen, O., Teuhola, J., Mattila, H., & Tyystjärvi, E. (2019). Automatic detection of cereal rows by means of pattern recognition techniques. Computers and Electronics in Agriculture, 162, 677-688. https://doi.org/10.1016/j.compag.2019.05.002
Thakral, S., & Manhas, P. (2018). Image processing by using different types of discrete wavelet transform. International Conference on Advanced Informatics for Computing Research: Springer 499-507. https://doi.org/10.1007/978-981-13-3140-4_45
Vijayashree, T., & Gopal, A. (2015). Comparison procedure for the authentication of Basil (Ocimum tenuiflorum) leaf using image processing technique. In 2015 International Conference on Communications and Signal Processing (ICCSP) 0075-0078. IEEE. https://doi.org/10.1109/iccsp.2015.7322591
Vioix, J., Douzals, J., & Truchetet, F. (2004). Aerial detection and localization of weed by using multispectral and spatial approaches. AgEng2004, European Society of Agricultural Engineers, Leuven, Belgium, September: 12-16.
Winterhalter, W., Fleckenstein, F. V., Dornhege, C., & Burgard, W. (2018). Crop row detection on tiny plants with the pattern hough transform. IEEE Robotics and Automation Letters, 3(4), 3394-3401. https://doi.org/10.1109/lra.2018.2852841
Zhmud, V., Kondratiev, N., Kuznetsov, K., Trubin, V., & Dimitrov, L. (2018). Application of ultrasonic sensor for measuring distances in robotics. Journal of Physics: Conference Series: IOP Publishing, 3, 032189. https://doi.org/10.1088/1742-6596/1015/3/032189
|