Ahmad, A. (2005). Change detection in high density urban area and rural area using high resolution satellite image. Atılım Üniversitesi.
Arekhi, S., & Adibnejad, M. (2011). Efficiency assessment of the of Support Vector Machines for land use classification using Landsat ETM+ data (Case study: Ilam Dam Catchment). Iranian Journal of Range and Desert Research, 18, 420-440. (in Persian). https://doi.org/10.22092/ijrdr.2011.102175
Bounoua, L., Collatz, G., Los, S., Sellers, P., Dazlich, D., Tucker, C., & Randall, D. (2000). Sensitivity of climate to changes in NDVI. Journal of Climate, 13, 2277-2292. https://doi.org/10.1175/1520-0442(2000)013<2277:SOCTCI>2.0.CO;2
Efimov, A. I., Kolchaev, D. A., Nikiforov, M. B., & Novikov, A. I. (2018). Algorithm of geometrical transformation and merging of radar and video images for technical vision systems. Pages 1-4. 2018 7 th Mediterranean Conference on Embedded Computing (MECO): IEEE. https://doi.org/10.1109/meco.2018.8406061
Fang, L., He, N., Li, S., Ghamisi, P., & Benediktsson, J. A. (2017). Extinction profiles fusion for hyperspectral images classification. IEEE Transactions on Geoscience and Remote Sensing, 56, 1803-1815 https://doi.org/10.1109/tgrs.2017.2768479
Gomez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55-72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
Hunger, S., Karrasch, P., & Wessollek, C. (2016). Evaluating the potential of image fusion of multispectral and radar remote sensing data for the assessment of water body structure. Pages 374-384. Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII: SPIE. https://doi.org/10.1117/12.2241264
Johnson, S. J. (2009). An evaluation of land change modeler for ARCGIS for the ecological analysis of landscape composition. Southern Illinois University at Carbondale.
Knorn, J., Rabe, A., Radeloff, V. C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009). Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment, 113, 957-964. https://doi.org/10.1016/j.rse.2009.01.010
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
Monsalve-Tellez, J. M., Torres-León, J. L., & Garcés-Gómez, Y. A. (2022). Evaluation of SAR and Optical Image Fusion Methods in Oil Palm Crop Cover Classification Using the Random Forest Algorithm. Agriculture, 12, 955. https://doi.org/10.3390/agriculture12070955
Myneni, R. B., Asrar, G., Tanre, D., & Choudhury, B. J. (1992). Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30, 302-314. https://doi.org/10.1109/36.134080
Nouri, H., Anderson, S., Sutton, P., Beecham, S., Nagler, P., Jarchow, C. J., & Roberts, D. A. (2017). NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands. Science of the Total Environment, 584, 11-18. https://doi.org/10.1016/j.scitotenv.2017.01.130
Palubinskas, G., Makarau, A., & Tao, J. (2011). Fusion of optical and radar data for the extraction of higher quality information.
Rahnama, S., Maharlooei, M., Rostami, M., & Maghsoudi, H. (2018). Date palm identification using Sentinel and Landsat satellites imagery. Pages 1. 2018 ASABE Annual International Meeting: American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.201801777
Rahnama, S., Maharlooei, M., Rostami, M. A., & Maghsoudi, H. (2019). Determining the Best Classification Algorithm in order to Estimate the Area under Date Palm Cultivation using LANDSAT 8 Satellite Imagery. Journal of Agricultural Machinery, 9(2), 321-335. (in Persian). https://doi.org/10.22067/jam.v9i2.67310
Rajah, P., Odindi, J., & Mutanga, O. (2018). Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) for invasive alien plant species detection and mapping. Remote Sensing Applications: Society and Environment, 10, 198-208. https://doi.org/10.1016/j.rsase.2018.04.007
Tuia, D., Merenyi, E., Jia, X., & Grana-Romay, M. (2014). Foreword to the special issue on machine learning for remote sensing data processing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 1007-1011. https://doi.org/10.1109/jstars.2014.2311915
Wang, H., Li, Q., Gao, Z., Sun, B., & Du, X. (2014). A ssessment of land degradation using time series trends analysis of vegetation indictors in Beijing-Tianjin dust and sandstorm source region. Pages 753-756. 2014 IEEE Geoscience and Remote Sensing Symposium: IEEE. https://doi.org/10.1109/igarss.2014.6946533
|