- Abedi-Koupa, J., Ezzatian, R., Vossoughi-Shavari, M., Yaghmaei, S., & Borghei, M. (2007). The effects of microbial population on phytoremediation of petroleum contaminated soils using tall fescue. International Journal of Agriculture and Biology 9: 242-246. https://doi.org/1560-8530/2007/09-2-242-246.
- Adavi, Z. (2011). Phytoremediation of oil contaminated soils by Bermudagrass varieties, Journal of Environmental Science and Engineering 48: 13-19. (In Persian with English abstract)
- Akaninwor, J.O., Ayeleso, A.O., & Monago, C.C. (2007). Effect of different concentrations of crude oil (Bonny light) on major food reserves in guinea corn during germination and growth. Journal of Science Research and Essay 2(4): 127-131.
- Anigboro, A., & Tonukari, N. (2008). Effect of crude oil on invertase and amylase activities in cassava leaf extract and germinating cowpea seedlings. Asian Journal of Biological Science 1: 56-60.
- Aprill, W., & Sims, R.C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soils. Chemosphere 20: 253-265. https://doi.org/10.1016/0045-6535(90)90100-8.
- Baek, K.H., Kim, H.S., Oh, H.M., & Yoon, B.K. (2004). Effects of crude oil, oil components, and bioremediation on plant growth. Journal of Environmental Science and Health, Part A. 39(9): 2465-2472. https://doi.org/10.1081/ESE-200026309.
- Besalatpour, A.A., Hajabbasi, M.A., Khoshgoftarmanesh, A.M., & Afyuni, M. (2008). Remediation of petroleum contaminated soils around the Tehran oil refinery using Phytostimulation method. Journal of Agriculture Resources 15(4): 22-35. (In Persian with English abstract)
- Bint, P., & Portal, J.M. (2000). Dissipation of 3-6 ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Journal of Soil Biology and Biochemistry 32: 2077-2077. https://doi.org/10.1016/S0038-0717(00)00100-0.
- Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., & Clark, F.E. (1965). Methods of soil analysis: Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison Inc., Madison, Wisconsin. p. 1569
- Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total. In: Methods of soil analysis, Part 2. American Society of Agronomy, Madison, Wisconsin. pp: 595-624.
- Budhadev, B., Sabitry, B., & Hari, P. (2012). Crude oil contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water, Air, and Soil Pollution 233: 3373-3383. https://doi.org/10.1007/s11270-012-1116-6.
- Caudle, K.L., & Maricle, B.R. (2014). Physiological relationship between oil tolerance and flooding tolerance in marsh plants. Environmental and Experimental Botany 107: 7–14. https://doi.org/10.1016/j.envexpbot.2014.05.003.
- Cedric, K., Pettersson, K., Leeds, P., Harrison, R.L., & Ledin, S. (2007). Root establishment of perennial ryegrass ( perenne) in diesel contaminated subsurface soil layers. Environmental Pollution 145: 68-74. https://doi.org/10.1016/j.envpol.2006.03.039.
- Chaineau, C.H., Morel, J.L., & Oudot, J. (1997). Phytotoxicity and plant uptake of fuel oil hydrocarbons. Environmental Pollution 26: 1478-1483. https://doi.org/10.1016/j.envpol.2006.03.039.
- Chupakhina, G.N., & Maslennikov, P.V. (2004). Plant adaptation to oil stress. Russian Journal of Ecology 35: 290-295. https://doi.org/10.1023/B:RUSE.0000040681.75339.59.
- Cupers, C., Pancras, T., Grotenhuis, T., & Rulkens, W. (2002). The estimation of PAH bioavailability in contaminated sediments using hydroxypropy1-B-cylodextrin and triton x-100 extraction techniques. Chemosphere 46: 1235-1245. https://doi.org/10.1016/S0045-6535(01)00199-0.
- Dashti, N., Khanafer, M., El-Nemr, I., & Sorkhoh, N. (2009). The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74: 1354-1359. https://doi.org/10.1016/j.chemosphere.2008.11.028.
- Dewis, J., & Freitas, F. (1984). Physical and chemical methods of soil and water Analysis. FAO soil bulletin 10, Oxford and 1BH publishing CO. PVT. LTD. New Delhi Bombay Calcutta.
- Diaz-Perez, J.C., Shckel, K.L., & Sutter, E.G. (2006). Relative water content. Annals of Botany 97: 85-96.
- Dorazio, V., Ghanem, A., & Senesi, N. (2013). Phytoremediation of pyrene contaminated soils by different plant species. Journal of Clean (Soil, Air, Water) 41(4): 377-382. https://doi.org/10.1002/clen.201100653.
- Escalante, E.E., Gallegos-Martinez, M.E., Favela-Torres, E., & Gutierrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413. https://doi.org/10.1016/j.chemosphere.2004.10.034.
- Farzami Spehr, M., Nowruzi Haji Abdal, F., & Farj Zadeh, M.A. (2013). Phytoremediation ability of Polypogon monspeliensis in refining oil contaminated soils. Journal of Plant Science Research 29(1): 75-86. (In Persian with English abstract)
- García-Sánchez, M., Košnář, Z., Mercl, F., Aranda, E., & Tlustoš, P. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial- assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety 147: 165–174. https://doi.org/10.1016/j.ecoenv.2017.08.012.
- Gaskin, S.E., & Bentham, R.H. (2010). Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Science of the Total Environment 408: 3683-3688. https://doi.org/10.1016/j.scitotenv.2010.05.004.
- Huang, X.D., Alawi, Y.E., Gurska, J., Glick, B.R., & Greenberg, B.M. (2005). A multiprocessor phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soil. Microchemical Journal 81: 139-147. https://doi.org/10.1016/j.microc.2005.01.009.
- Hutchinson, S.L., Banks, M.K., & Schwab, A.P. (2001). Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. Journal of Environmental Quality 30: 395-403. https://doi.org/10.2134/jeq2001.302395x.
- Jussila, M.M. (2006). Molecular biomonitoring during rhizoremediation of oil contaminated soil. Ph.D thesis. Department of applied chemistry and microbiology division of microbiology. University of Helsinki. Finland.
- Kaimi, , Mukaidani, T., & Tamaki, M. (2007). Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Journal of Plant Production Science 10(2): 211-218. https://doi.org/10.1626/pps.10.211.
- Kaimi, E., Mukaidani, T., Miyoshi, S., & Tamaki, M. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environmental and Experimental Botany 55: 110-119. https://doi.org/10.1016/j.envexpbot.2004.10.005.
- Kamath, R., Rentz, J.A., Schnoor, J.L., & Alvarez, P.J.J. (2004). Phytoremediation of hydrocarbon-contaminated soils: principles and application. Chapter 16. Petroleum Biotechnology: Developments and Perspectives. Studies in Surface Science and Catalysis 151: 447-478. https://doi.org/10.1016/S0167-2991(04)80157-5.
- Lee, S.H., Lee, W.S., Lee, C.H., & Kim, J.G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials 153: 892-898. https://doi.org/10.1016/j.jhazmat.2007.09.041.
- Lindsay, W.L., & Norvell, W.A. (1978). Development of a DTPA Soil test for zinc, iron, manganese, and copper. Soil Science Society American Journal 42: 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
- Luepromchai, E., Lertthamrongsak, W., Pinphanichakarn, P., & Thaniyavarn, S. (2007). Biodegradation of PAHs in petroleum-contaminated soil using tamarind leaves as microbial inoculums. Biodegradation 29: 515-527.
- Martin, B.C., George, S.J., & Price, C.A. (2014). Therole of root exuded low molecular weight organicanions in facilitating petroleum hydrocarbondegradation: current knowledge and futureScience of the Total Environmental 472: 642–653. https://doi.org/10.1016/j.scitotenv.2013.11.050.
- Merkel, N., Schultze-Kraft, R., & Infant, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Journal of Water, Air and Soil Pollution 165: 195-209. https://doi.org/10.1007/s11270-005-4979-y.
- Moubasher, H.A., Hegazy, A.K., Mohamed, N.H.,Moustafa, Y.M., Kabiel, H.F., & Hamad, A.A. (2015). Phytoremediation of soils polluted withcrude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration and Biodegradation 98: 113-120. https://doi.org/10.1016/j.ibiod.2014.11.019.
- Nie, M., Zhang, X., Wang, J., Jiang, L., Yang, J., Quan, Z., Cui, Q., Fang, C., & Li, B. (2009). Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biology and Biochemistry 41: 2535-2542. https://doi.org/10.1016/j.soilbio.2009.09.012.
- Olsen, S.R., & Sommers, L.E. (1982). In: methods of soil analysis, Part2. American Society of Agronomy, Madison, Wisconsin. pp: 403-431.
- Omosun, G., Markson, A., & Mbanasor, O. (2008). Growth and anatomy Amaranthus hybridus as affected different crude oil concentration. American-Eurasian Journal of Scientific Research 3(1): 70-74.
- Oster, J.D., & Garrison, S. (1980). The Gapon coefficient and the exchangeable sodium percentage sodium adsorption ratio relation. Soil Science Society American Journal 44: 258-260. https://doi.org/10.2136/sssaj1980.03615995004400020011x.
- Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis jalapa in greenhouse plot experiment. Journal of Hazardous Materials 168: 1490-1496. https://doi.org/10.1016/j.jhazmat.2009.03.036.
- Rajaei, S., Raiesi, F., & Seyedi, S. (2012). The Bioremediation of an aged petroleum contaminated soil using bioaugmentation and phytoremediation techniques. Water and Soil 26(4): 908-921. (In Persian with English abstract). https://org/10.22067/jsw.v0i0.15295.
- Ramirez, M.E., Zapien, B., Zegrra, H.G., Rojas, N.G., & Fernandez, L.C. (2009). Assessment of hydrocarbon biodegradability in clayed and weathered polluted soils. Journal International Biodeterioration and Biodegradation 63: 347-353. https://doi.org/10.1016/j.ibiod.2008.11.010.
- Rhoades, J.D. (1982). Soluble salts. In: Page A.L., Miller R.H., and Keeney D.R. (eds.), Methods of Soil Analysis. Part 2, Chemical and Mineralogical Properties (2nd edition). Agronomy series No.9. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, USA, pp. 167-179.
- Shekoohiyan, S., Moussavi, G., & Naddafi, K. (2016).The peroxidase- mediated biodegradation ofpetroleum hydrocarbons in a H2O2-induced SBR using in-situ production of peroxidase: biodegradation experiments and bacterial Journal of Hazardous Materials 313: 170–178. https://doi.org/10.1016/j.jhazmat.2016.03.081.
- Scott, S. (2003). Biodegradation and toxicity of total petroleum hydrocarbon leachate from land treatment units. Department of Engineering. California Polytechnic State University.
- Shahriari, M.H., Savaghebi Firrozabadi, G., Minai-Tehrani, D., & Padidaran, M. (2006). The effect of mixed plants alfalfa (Medicago sativa) and fescue (Festuca arundinacea) on the phytoremediation of light crude oil in soil. Environmental Sciences 4(13): 33-40. (In Persian with English abstract)
- Shim, H., Chauhan, S., Ryoo, D., Bowers, K., Thomas, S.M., & Burken, J.G. (2000). Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Applied and Environmental Microbiology 66(11): 4673-4678. https://doi.org/10.1128/AEM.66.11.4673-4678.2000
- Smits, P.E. (2005). Phytoremediation. Annual Reviews of Plant Biology 56: 15-39.
- Victor, J., & Sadiq, A. (2002). Effects of spent engine oil on the growth parameters chlorophyll and protein level of Amaranthus hybridus Environmentalist 22: 23-28. https://doi.org/10.1023/A:1014515924037.
- Villalobos, M., Avila-Forcada, A.P., & Gutierrez-Ruiz, M.E. (2008). An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils. Journal of Water, Air and Soil Pollution 194: 151-161. https://doi.org/10.1007/s11270-008-9704-1.
- Walkley, A., & Black, I.A. (1974). An examination of the digestion method for determining organic carbon in soils: Effect of variations in digestion conditions and of in organic soil constituents. Soil Science 63: 251-263.
- Xu, S.Y., Chen, Y.X., Wu, W.X., Wang, K.X., Lin, Q., & Liang, X.Q. (2005). Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Science of the Total Environment 1-10. https://doi.org/10.1016/j.scitotenv.2005.05.030.
|