- Aksakalli, , & Malekipirbazari, M. (2016). Feature selection via binary simultaneous perturbation stochastic approximation, Pattern Recognition Letters 75: 41-47. https://doi.org/10.1016/j.patrec.2016.03.002.
- Algin, R., Alkaya, A.F., & Agaoglu, M. (2022). Performance of simultaneous perturbation stochastic approximation for feature selection. In International Conference on Intelligent and Fuzzy Systems (pp. 348-354). Springer, Cham.
- Babazadeh, , Shamsnia, S.H., Bostani, F., Norozieghdam, A., & Khodakaramidwhkordi, D. (2012). Evaluation of drought, wet and prediction of Shiraz climatic parameters precipitation and temperature by using stochastic methods. Journal of Geography and Urban Planning 16(41): 23-42. (In Persian)
- Balling Jr, R.C., & Idso, S.B. (1990). Effects of greenhouse warming on maximum summer temperatures. Agricultural and Forest Meteorology 53(1-2): 143-147.
- Chen, H., Xu, C.Y., & Guo, S.L. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology 434: 36–45. https://doi.org/10.1016/j.jhydrol.2012.02.040.
- Diamantopoulu, M.J., Georgiou, P.E., & Papamichial, D.M. (2010). Evaluation of artificial neural network in estimating reference evapotranspiration with minimal meteorological data. Global Nest Journal 13(1): 18-27.
- Fatahi, M.H., Bamdad, A., & Rahimikhob, A. (2012). Application of association rules to monitor rainfall and drought events using sea surface temperature (Case study: Khozestan). Journal of Water Resource Engineering 109-118. (In Persian with English abstract)
- Hashmi, M.Z., Shamseldin, A.Y., & Melville, B.W. (2011). Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environmental Research and Risk Assessment 25(4): 475-484.
- He, R.R., Chen, Y., Huang, Q., & Kang, Y. (2019). LASSO as a tool for downscaling summer rainfall over the Yangtze River valley. Journal of Hydrology 64(1): 92–104. https://doi.org/10.1080/02626667.2019.1570210.
- Hessami, M., Gachon, P., Ouarda, T., & St-Hilaire, A. (2008). Automated regression-based statistical downscaling tool. Environ Model Software 23: 813–834. (In Persian)
- Jafarzadeh, A., Pourreza-Bilondi, M., Khashei Siuki, A., & Ramezani Moghadam, J. (2021). Examination of various feature selection approaches for daily precipitation downscaling in different climates. Water Resources Management 35(2): 407-427.
- Kharin, V.V., & Zwiers, F.W. (2000). Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. Journal of Climate13(21): 3760-3788. https://doi.org/10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2.
- Meenu, , Rehana, S., & Mujumdar, PP. (2013). Assessment of hydrologic impacts of climate change in Tunga-Bhadra River basin, India with HEC-HMS and SDSM. Hydrological Process 27(11): 1572–1589. https://doi.org/10.1002/hyp.9220.
- Muthukrishnan, R., & Rohini, R. (2016). LASSO: A feature selection technique in predictive modeling for machine learning. In 2016 IEEE international conference on advances in computer applications (ICACA) (pp. 18-20). IEEE.
- Nasseri, , & Zahraie, B. (2013). Performance assessment of different data mining methods in statistical downscaling of daily precipitation. Journal of Hydrology 492: 1–14. https://doi.org/10.1016/j.jhydrol.2013.04.017.
- Natekin, , & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics 7: 21. https://doi.org/10.3389/fnbot.2013.00021.
- Nazeri Tahroudi, M., Amirabadizadeh, M., & Zaineli, M.J. (2017). Investigating artificial intelligence and regression methods in simulating daily temperature values. Meteorology and Atmospheric Sciences 1(1): 65-76. (In Persian)
- Niknam, F. (2013). Climatic data mining to present a climate forecasting model in Isfahan Province. University of Shiraz.
- Omidvar, , Shafii, Sh., Taghizadeh, Z., & Alipur, M. (2015). Efficient evaluation of decision tree model in Kermanshah Synoptic station rainfall forecast. Journal of Applied Geosciences Research 14(34): 89-110. (In Persian)
- Pal, , & Deswal, S. (2009). M5 model tree based modeling of reference evapotranspiration. Hydrologic Process 23: 1437-1443. https://doi.org/10.1002/hyp.7266.
- Panahi, , & Mirshahi, S.H. (2016). Assessment among two data mining algorithms CART and CHAID in forecast air temperature of the Synoptic station of Arak. Journal of Environmental Science 13(4): 52-58. (In Persian)
- Salahi, , & Fateminiya, F.S. (2017). Forecasting frost changes in the city of Kashan based on the simulation of general atmospheric circulation model. Journal of Geography and Environmental Planning 28(3): 20-36. (In Persian)
- Sfandiari, , Hosseini, S.H., Azadimobaraki, M., & Hejazizadeh, Z. (2010). Predict the average monthly temperature in Sanandaj station using the model (MLP) MLP Network, Journal of Iran Geographic 8(27): 45-65. (In Persian)
- Troncoso, , Salcedo_Sanz, S., Casanova_ Mateo, C., Riquelme, J.C., & Prieto, L. (2015). Local model based regression trees for very short-term wind speed prediction. Renewable Energy 81: 589-598.
- Zhang, X., Yan, X., & Chen, Z. (2016). Reconstructed regional mean climate with Bayesian model averaging: a case study for temperature reconstruction in the Yunnan–Guizhou plateau, China. Journal of Climate 29(14): 5355–5361. https://doi.org/10.1175/JCLI-D-15-0603.1.
|