تعداد نشریات | 49 |
تعداد شمارهها | 1,844 |
تعداد مقالات | 19,504 |
تعداد مشاهده مقاله | 9,284,408 |
تعداد دریافت فایل اصل مقاله | 6,515,022 |
معرفی کربناتیت های ناحیه متالوژنی بافق، ایران مرکزی، زمین شناسی اقتصادی عناصر نادر خاکی بر اساس سنگ شناسی و زمین شیمی، مدل ژئودینامیک خاص تغییر سریع کمان فرورانشی به ریفت قاره ای کامبرین آغازین | ||
زمین شناسی اقتصادی | ||
مقاله 1، دوره 14، شماره 3 - شماره پیاپی 34، 1401، صفحه 1-35 اصل مقاله (2.73 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/econg.2022.78597.1054 | ||
نویسنده | ||
سعید کلاهدانی* | ||
کارشناسی ارشد، گروه زمینشناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران | ||
چکیده | ||
کربناتیت ها از جمله نادرترین سنگهای کره زمین هستند. این سنگهای آذرین حاوی بیش از 50 درصد کانیهای کربناته، دولومیت، کلسیت و آنکریت هستند. سنگنگاری و مینرالوگرافی کانیهای سیلیکاته و فرعی این سنگها در مقیاس ماکروسکوپی و میکروسکوپی نیازمند دید تخصصی است. بر روی آخرین پایگاه دادههای رقومی کربناتیتهای دنیا، هیچ موردی از ایران دیده نمیشود؛ در حالیکه وسعت رخنمونهای اکتشاف نشده این سنگها در ناحیه متالوژنی بافق واقع در میانه بلوک پشتبادام از خرد قاره ایران مرکزی قابلتوجه است. از زمان آغاز پژوهشهای میدانی و انتشار نقشههای زمینشناسی تا بررسیهای پر ارجاع جدید، تا پیش از این پژوهش، تودههای نیمه عمیق کربناتیت بارور در همتافتهای دگرگونی و تودههای ترونجمیتی کامبرین آغازین این ناحیه بارها به عنوان میان لایههای مرمری، آنکلاوهای آهکی و یا به عنوان کربناتهای رسوبی در نظر گرفته شدهاند. با وجود اشارههایی هرچند کوتاه در مقالههای قدیمی، مبنی بر ارتباط کربناتیتها با شدت کانی سازی آهن- آپاتیت نوع کایرونا در ناحیه؛ اما این سنگها همچنان نادیده باقی ماندهاند. در این پژوهش، با استناد به تصویرهای صحرایی و شواهد سنگنگاری دست اول، ضمن ترسیم نمودارهای پتروشیمیایی شاخص، ماهیت کربناتیتی این سنگها از جنبههای مختلف بحثشده است. در واقع کربناتیتها مهمترین نسل سنگهای ریفت کامبرین زیرین بلوک پشتبادام و به خصوص ناحیه بافق هستند که باید در مباحث سنگشناسی، مدلهای ژئودینامیکی و البته از دیدگاه پتانسیل ارزشمند زمینشناسی اقتصادی عناصر نادر خاکی به طور ویژه بررسی شوند | ||
کلیدواژهها | ||
کربناتیت؛ عناصر نادر خاکی؛ ترونجمیت؛ ذخایر آهن- آپاتیت نوع کایرونا؛ ناحیه متالوژنی بافق؛ بلوک پشتبادام؛ ایران مرکزی | ||
مراجع | ||
Achterbergh, E., Griffin, W., Ryan, C., O’Reilly, S., Pearson N, Kivi, K. and Doyle, B., 2002. Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30(8): 743–746. https://doi.org/10.1130/0091-7613(2002)030<0743:SSFQCF>2.0.CO;2 Aftabi, A., Mohseni, A., Babeki, A. and Azaraien, H., 2009. Fluid inclusion and stable isotope study of Esfordi apatite-magnetite deposit, Central Iran. Economic Geology, 104(1): 137–143. https://doi.org/10.2113/gsecongeo.104.1.137 Babakhani, A.R., Pourlatifi, A., Saidi, A. and Ghlamghash, J., 1999. Geological map of ZamanAbad, scale 1: 100000. Geological Survey of Iran. Basson, I., Ravasan, R., Mahdavi, F., Hemmati, Y., Sabzeparvar, M., Masoodi, M., Wooldridge, A., Andrew, J., Doyle, G. and King, J., 2018. Structural Interpretation of New High-Resolution Aeromagnetic and Radiometric Data over Central Iran: Block Definition and Rotational Tectonics. Journal of African Earth Sciences, 147: 585–602. https://doi.org/10.1016/j.jafrearsci.2018.06.016 Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019 Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S., and Ghazban, F., 2011. Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical Geology, 281(3–4): 253–269. http://dx.doi.org/10.1016/j.chemgeo.2010.12.013 Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam, 114 pp. https://doi.org/10.1016/B978-0-444-42148-7.50008-3 Daliran, F., 1990. The magnetite-apatite deposit of Mishdovan, east central Iran. An alkali rhyolite hosted, "Kiruna type" occurrence in the infracambrian bafg metallotect (Mineralogic, petrographic and geochemical study of the ores and the host rocks). Heidelberg, Ruprecht-Karls-Universität, 248 pp. Corpus ID: 127555608. Retrieved November 26, 2022 from https://books.google.com/books/about/The_Magnetite_apatite_Deposit_of_Mishdov.html?id=wg23zQEACAAJ Darvishzadeh, A., 1983. The study of Bafq phosphate, Esfordi. Science Magazine of Tehran University, 2: 2–24. (in Persian) Retrieved November 26, 2022 from https://jos.ut.ac.ir/article_16155.html Debon, F. and Le Fort, P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 73(3): 135–149. http://dx.doi.org/10.1017/S0263593300010117 Deymar, S., Yazdia, M., Reghvanianzadeh, M. and Behzadia, M., 2018. Alkali metasomatism as a process for Ti–REE–Y–U–Th mineralization in the Saghand Anomaly 5, Central Iran: Insights from geochemical, mineralogical, and stable isotope data. Ore Geology Reviews, 93: 308–336. https://doi.org/10.1016/j.oregeorev.2018.01.008 Elliott, H.A.L., Wall, F., Chakhmouradian, A.R., Siegfried, P.R., Dahlgren, S., Weatherley, S., Finch, A.A., Marks, M.A.W., Dowman, E. and Deady, E., 2018. Fenites associated with carbonatite complexes: A review. Ore Geology Reviews, 93: 38–59. https://doi.org/10.1016/j.oregeorev.2017.12.003 Fiannacca, P. and Cirrincione, R., 2020. Metasedimentary Metatexites with Trondhjemitic Leucosomes from NE Sicily: Another Example of Prograde Water-fluxed Melting in Collisional Belts. Geosciences, 10(4): 123. https://doi.org/10.3390/geosciences10040123 Förster, H. and Jafarzadeh, A., 1994. The Bafq mining district in Central Iran–A highly mineralized infracambrian volcanic field. Economic Geology, 89(8): 1697–1721. https://doi.org/10.2113/gsecongeo.89.8.1697 Golkaram, S., Rashidnejhad Omranm N., Masoudi, F. and Vahabzadeh, G., 2011. Zarigan granite, magmatic or metasomatic? Science magazine of Tarbiat-e Modares Univesity, 10(2): 825–840. Retrieved November 26, 2022 from https://jsci.khu.ac.ir/article-1-1387-fa.html Haghipour, A., Valeh, N., Pelissier, G. and Davoudzadeh, M., 1977. Explanatory text of the Ardekan Quadrangle 1:250000 scale Geological Map (Yazd Province, Central Iran). Geological Survey of Iran, Tehran, Report 8, 58 pp. Hanson, G.N., 1980. Rare earth elements in petrogenetic studies of igneous systems: Annual Review of Earth Planetary Sciences, 8: 371–406. https://doi.org/10.1146/annurev.ea.08.050180.002103 Harker, A., 1909. The Natural History of Igneous Rocks. Cambridge University Press, Cambridge, 384 pp. https://doi.org/10.1017/CBO9780511920424 Heidarian, H., Alirezaei, S. and Lentz, D., 2017. Chadormalu Kiruna-type magnetite-apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geology Reviews, 83: 43–62. https://doi.org/10.1016/j.oregeorev.2016.11.031 Hulett, S., Simonetti, A., Rasbury, T. and Hemming, N., 2016. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nature Geocience, 9: 904–908. https://doi.org/10.1038/NGEO2831 Irvine, T.M. and Baragar, W.R., 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Science 8: 523–548. https://doi.org/10.1139/e71-055 Jami, M., Dunlop, A.C. and Cohen, D.R., 2007. Fluid Inclusion and Stable Isotope Study of the Esfordi Apatite-Magnetite Deposit, Central Iran. Economic Geology, 104(1): 1111–1128. https://doi.org/10.2113/gsecongeo.104.1.140 Jiménez, M., Fernàndez, M., Saura, E., Vergés, J. and Garcia-Castellanos, D., 2012. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasia collision (Iran). Geophysical Journal International, 190(3): 1311–1324. https://doi.org/10.1111/j.1365-246X.2012.05580.x Karimpour, M.H., Rezaei, M., Zarasvandi, A. and Malekzadeh, A., 2021. Saveh-Nain-Jiroft Magmatic Belt replaces Urumieh-Dokhtar Magmatic Belt: Investigation of genetic relationship between porphyry copper deposits and adakitic and non-adakitic granitoids. Journal of Economic Geology, 13(3): 465–506. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V13I3.1034 Majidi, J. and Babakhani, A.R., 2000. Geological map of Ariz, scale 1: 100000. Geological Survey of Iran. Mitchell, R.H., 2005. Carbonatite and Carbonatites and Carbonatites. The Canadian Mineralogist, 43(6): 2049–2068. https://doi.org/10.2113/gscanmin.43.6.2049 Mokhtari, M.A.A, Hossein Zadeh, G. and Emami, M.H., 2013. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry, Journal of Earth System Science, 122(3): 795–807. https://doi.org/10.1007/s12040-013-0313-z Müller, D., Rock, N.M.S. and Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineral Petrology, 46: 259–289. https://dx.doi.org/10.1007/BF01173568 Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Northern Turkey. Contribution Mineral Petrology, 58: 63–81. https://dx.doi.org/10.1007/BF00384745 Rajabi, A., Canet, C., Rastad, E. and Alfonsod, P., 2014. Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the Early Cambrian Zarigan–Chahmir Basin, Central Iran. Ore Geology Reviews, 64: 328–353. http://dx.doi.org/10.1016/j.oregeorev.2014.07.013 Ramezani, J., 1997. Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand Area, central Iran. Unpublished Ph.D. thesis, Washington University, St. Louis, Missouri, USA, 416 pp. Ramezani. J. and Tucker, R.D., 2003. The Saghand region, Central IRAN: U-Pb Geochronology, Petrogenesis and implications for Gondowana tectonics. American Journal of Science, 303(7): 622–665. https://doi.org/10.2475/ajs.303.7.622 Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515–1533. https://doi.org/10.2113/gsecongeo.98.8.1515 Richards. J. P., 2007; Adakite-Like Rocks: Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537 Samani, B., 1988. Metallogeny of the Precambrian in Iran. Precambrian Research, 39(1–2): 85–106. https://doi.org/10.1016/0301-9268(88)90053-8 Schandl, E.S. and Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97(3): 629–642. https://doi.org/10.2113/gsecongeo.97.3.629 Shang, C.K., Satir, M., Siebel, W., Nsifa, E.N., Taubald, H., Liégeois, J.P. and Tchoua, F.M., 2004. TTG magmatism in the Congo craton: Case study of the Sangmalima region, Ntem Complex, southern Cameroon. Journal of African Earth Sciences, 40(1-2): 61–79. https://doi.org/10.1016/j.jafrearsci.2004.07.005 Simandl, G. and Paradis, S., 2018. Carbonatites: related ore deposits, resources, footprint, and exploration methods. Transactions of the Institutions of Mining and Metallurgy, 127(4): 123–152. https://doi.org/10.1080/25726838.2018.1516935 Stosch, H.G., Romer, R.L., Daliran, F. and Rhede, D., 2011. Uranium-lead ages apatite from iron oxide ores of the Bafq District, east-central Iran. Mineralium Deposita, 46: 9–21. http://dx.doi.org/10.1007/s00126-010-0309-4 Talab, A.S. and Alinia, F., 2015. Rare earth elements in the Chadormalu iron ore mine: Statistical analysis of ΣREE grade-variate in the northern orebody, REE enrichment through beneficiation process, and Th contents. 5th Conference of Mining Engineering Organization, Ministry of Industry, Mining and Trade, Tehran, Iran. Terekhov, E.N. and Shcherbakova, T.F., 2006. Genesis of positive Eu anomalies in acid rocks from the Eastern Baltic Shield. Geochemistry International, 44: 439–455. https://doi.org/10.1134/S0016702906050028 Torab, F. and Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71(3): 347–363. https://doi.org/10.1180/minmag.2007.071.3.347 Tykot, R., 1993. Absolute Age Determination: Physical and Chemical Dating Methods and Their Application. Mebus A. Geyh and Helmut Schleicher. Translated by R. Clark Newcomb. Springer-Verlag, New York, 503 pp. https://doi.org/10.2307/282217 Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 Winter, J.D., 2001 An Introduction to Igneous and Metamorphic Petrology. Prentice-Hall Inc. Ontario, 697 pp. https://doi.org/10.2113/gscanmin.39.5.1503 Wooley, A.R. and Kempe. D.R.C., 1989. Carbonatites: nomenclature, average chemical compositions, and element distribution. In: K. Bell (Editor), Carbonatites. Unwm Hyman, London. pp. 1–14. Yang, K., Fan, H., Santosh, M., Hu. F. and Wang, K., 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews, 40(1): 122–131. https://doi.org/10.1016/j.oregeorev.2011.05.008
| ||
آمار تعداد مشاهده مقاله: 454 تعداد دریافت فایل اصل مقاله: 328 |