- Akhtar, A.N., Abbasi, A., & Hussain, A. (2010). Effect of calcium chloride treatments on quality characteristics of loquat fruit during storage. Pakistan Journal of Botany, 42(1), 181-188.
- Alcaraz, C., Botia, M., Carlos, F., & Fernando, R. (2004). Effect of foliar sprays containing calcium, magnesium and titanium on peach (Prunus persica L.) fruit quality. Journal of the Science of Food and Agriculture, 84(9), 949-954. http://dx.doi.org/10.1002/jsfa.1703
- Aminizade bezenjani, S. (2019). Study of the interaction of nanoparticles of titanium dioxide and selenium dioxide on increasing the resistance of tomato plant under salinity stress. University of Industrial and Advanced Technology.
- Arena, M.E., & Curvetto, N.S. (2008). Berberis buxifolia fruiting: Kinetic growth behavior and evolution of chemical properties during the fruiting period and different growing seasons. Scientia Horticulturae, 118, 120-127. http://dx.doi.org/10.1016/j.scienta.2008.05.039
- Asadi Gharneh, H., Arzani, K., Shogaeyan, A., Golparvar, A., & Sabbaghnia, N. (2014). Evaluation of genetic diversity in some strawberry (Fragaria × annanasa Duch.) cultivars in Iran using morphological characteristics. Plant Productions, 4(37), 93-106.
- 6. Binesh, M., Mortazavi, A., Armin, M., & Moradi, M. (2010). Investigation of the use of titanium dioxide and silver nanocomposites in Mazafati date packaging on its microbial changes during storage. Journal of Food Science and Technology, 2(1), 1-8.
- Chang, L., Wang, Q., & Mei, H. (2007). Effect of nanoparticles on the bacterial community of the cucumber phyllosphere. Chinese Journal of Agricultural Biotechnology, 6(2), 141-145. http://dx.doi.org/10.1017/S1479236209990179
- Dar, T.A., Uddin, M., Khan, M.M.A., Hakeem, K.R., & Jaleel, H. (2015). Jasmonates counter plant stress: a review. Environmental and Experimental Botany, 115, 49-57. http://dx.doi.org/10.1016/j.envexpbot.2015.02.010
- Elghniji, K., Sabrine, S., Ben, Mosbah, M., Elimame, E., & Moussaoui, Y. (2014). Detoxification of 4-chlorophenolin TiO2 sunlight system: effect of raw and treated solution on seed germination and plants growth of various sensitive vegetables. Toxicological and Environmental Chemistry, 96, 869-879. http://dx.doi.org/10.1080/02772248.2014.983511
- Galili Marandi, R. (2007). Tiny fruits. Urmia University Jihad Publications 2: 240.
- Ghasemi, K., Emadi, S.M., & Ghasemi, Y. (2018). Effect of different culture media on broccoli (Brassica oleracea var. italica) yield components and mineral elements concentration in soilless Culture. Journal of Horticultural Science 31(4), 694-704. https://doi.org/10.22067/jhorts4.v31i4.58860
- Ghasemnezhad, M., Sherafati, M., & Payvast, G.A. (2011). Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annunm) fruits at two different harvest times. Journal Scientia Functional Foods, 3(1), 44-49. http://dx.doi.org/10.1016/j.jff.2011.02.002
- Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R.H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom( at cold storage temperature. Journal Science of Food Agriculture, 93(2), 368-374. http://dx.doi.org/10.1002/jsfa.5770
- Haghighi, M., & Daneshmand, B. (2012). Comparison of titanium and titanium nanoparticles on growth and photosynthesis of tomato in hydroponic system. Science and Technology of Greenhouse Cultures, 4(13), 73-79. (In persian).
- Hashemi Dehkourdi, E., Mousavi, M., Moallemi, N., & Ghafariyan moghareb, M.H. (2016). Effect of nanoparticles of titanium dioxide (anatase) on physiological characteristics of strawberry (Fragaria ananassa cv. Queen Elisa) in hydroponic condition. Journal of Plant Process and Function, 5(16), 1-8. (In Persian with English abstract)
- Heschel, M.S., & Riginos, C. (2005). Mechanism of selection for drought stress tolerance and avoidance in Impatiens capensis (Balsaminaceae). American Journal of Botany, 92, 37-44. https://doi.org/10.3732/ajb.92.1.37
- Hokmabadi, H., Haidarinezad, A., Barfeie, R., Nazaran, M., Ashtian, M., & Abotalebi, A. (2006). A new iron chelate introduction and their effects on photosynthesis activity chlorophyll content and nutrients uptake of pistachio (Pistacia vera L.). International Horticultural Congress and Exhibition. Seoul, Korea. August, 13-19. http://dx.doi.org/10.17660/ActaHortic.2007.741.19
- Hong, F., Yang, P., Gao, F., Liu, C., Zheng, L., Yang, F., & Zhou, J. (2005). Effect of nano-TiO2 on spectral characterization of photosystem II particles from spinach. Chemical Research in Chinese Universities, 21(2), 196–200.
- Hossain, M.R., Natarajan, S., Kim, H.T., Jesse, D.M.I., Lee, C.G., Park, J.I., & Nou, I.S. (2019). High density linkage map construction and QTL mapping for runner production in allo-octoploid strawberry Fragaria × ananassa based on ddRAD-seq derived SNPs. Scientific Reports, 9, 1-11. https://doi.org/10.1038/s41598-019-39808-9
- Jung, D.H., Kim, H.J., Choi, G.L., Ahn, T.I., Son, J.E., & Sudduth, K.A. (2015). Automated lettuce nutrient solution management using an array of ion-selective electrodes. Transactions of the ASABE, 58(5), 1309-1319. http://dx.doi.org/10.13031/trans.58.11228
- Khater, M.S. (2015). Effect of titanium nanoparticles (TiO2) on growth, yield and chemical constituents of coriander plants. Arab Journal of Nuclear Science and Applications, 48(4), 187-194.
- Kiafar, H., Mosavi, M., Ebadi, A., Moallemi, N., & Fattahi Moghaddam, M.R. (2019). Effect of Titanium Dioxide Nanoparticles on flower and fruit characteristics of early peach Alberta cultivar. 11th Iranian Congress of Horticultural Sciences, 11: 1-5.
- Li , J., Naeem, M.S., Wang, X., Liu, L., Chen, C., Ma, N., & Zhang, C. (2015). Nano- TiO2 is not phytotoxicas revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLOS One, 10(12), p.e0143885. https://doi.org/10.1371/journal.pone.0143885
- Lichtenthaler, H.K., & Buschmann, C. (2001). Extraction of photosynthetic tissues: chlorophylls and carotenoids. Food Analytical Chemistry, F4. 2.1- F4. 2.6.
- Mahmoodzadeh, H., Aghili, R., & Nabavi, M. (2013). Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Journal of Engineering and Applied Science, 3(14), 1365-1370.
- Marschner, P. (2012). Marschner, s mineral nutrition of higher plants. (Academic Press: London). 651 pp.
- Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Xiaoqing, L., Liang, C., & Fashui, H. (2007). Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biological Trace Element Research, 119(2), 183-192. http://dx.doi.org/10.1007/s12011-009-8425-7
- Moradi, I. (2020). The effect of titanium dioxide nanoparticles on modulating the effects of water stress in strawberries under soilless cultivation conditions. Faculty of Agriculture. Kordestan University.
- Morteza, E., Moaveni, P., Farahani, H.A., & Kiyani, M. (2013). Study of photosynthetic pigments changes ofmaize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus, 2(1), 247. http://dx.doi.org/10.1186/2193-1801-2-247
- Qi, M., Liu, Y., & Li, T. (2013). Nano-TiO2 improves the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research, 156, 323-328. http://dx.doi.org/10.1007/s12011-013-9833-2
- Rezaei, F., Moaveni, P., & Mozafari, H. (2015). Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr-e-Qods, Iran. Biological Forum – An International Journal, 7(1), 957-964.
- Sadeghi, P., & Hasanpour, H. (2021). Effect of foliar application of nano-TiO2 on some quantitative and qualitative attributes of strawberry fruit (Fragaria × ananassa Duch.) cv. Sabrina under deficit fertigation. Journal of Horticultural Sciences and Techniques of Iran, 22(3), 371-382.
- Siddiqi, K.S., & Husen, A. (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale research letters 11(1): 400. http://doi.org/10.1186/s11671-016-1607-2
- Siddiqi, K.S., & Husen, A. (2017). Plant response to engineered metal oxide nanoparticles. Nanoscale research letters 12(1): 92. http://dx.doi.org/10.1186/s11671-017-1861-y
- Song, C., Huang, M.C., White, J., Zhang, X., Wang, W., Kyei Sarpong, C., Jamali, Z.H., Zhang, H., Zhao, L., & Wang, Y. (2020). Metabolic profile and physiological response of cucumber foliar exposed to engineered MoS2 and TiO2 nanoparticles. Elsevier, 1-10. http://dx.doi.org/10.1016/j.impact.2020.100271
- Taiz, L., & Zeiger, E. (2002). Plant Physiology. Sinauer Associates.
- Tanada-Palmu, P., & Grosso, C. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36, 199-208. https://doi.org/10.1016/j.postharvbio.2004.12.003
- Tang, Y., Ma, X., Li, M., & Wang, Y. (2020). The effect of temperature and light on strawberry producthin in a solar greenhouse. Solar Energy, 195, 318-328. http://dx.doi.org/10.1016/j.solener.2019.11.070
- Tehrani, A. (2014). The effect of foliar application of humic substances on some quantitative and qualitative characteristics of strawberry var. Camarosa. Ph.D Dissertation, Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian).
- Todeschini, V., Aitlahmidi, N., Mazzucco, E., Marsano, F., Gosetti, F., & Robotti, E. (2018). Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Frontiers in Plant Science, 9, 1611. http://dx.doi.org/10.3389/fpls.2018.01611
- Turhan, E., & Eris, A. (2005). Changes of micronutrients, dry weight, and chlorophyll contents in strawberry plants under salt stress conditions. Communications in Soil Science and Plant Analysis, 36(7-8), 1021-1028. http://dx.doi.org/10.1081/CSS-200050418
- Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2), 179-190. https://doi.org/10.1385/BTER:110:2:179
- Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83-91. http://dx.doi.org/10.1385/bter%3A104%3A1%3A083
- Zheng, L., Mingyu, S., Chao, L., Liang, C., Huang, H., Xiao, W., Xiaoqing, L., Yang, F., Gao, F., & Hong, F. (2007). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119, 68-76. https://doi.org/10.1007/s12011-007-0047-3
|