- Abedini, M., Motallebi Azar, A., Zaare Nahandi, F., & Gohari, G. (2020). Application of pectin-tagged nano silver and triacontanol on in vitro microruberization of Solanum tuberosum cv. Agria. Journal of Vegetables Sciences, 4(1), 57–70.
- Akbari, A., Jafari, H., Gohari, G., Kheiri, G., & Mahdavinia, G. R. (2021). Fulvic acid-embedded poly (vinyl alcohol)–zinc oxide hydrogel nanocomposite: synthesis, characterization, swelling and release kinetic. International Nano Letters, 11(4), 347–354.
- Al-Jibouri, A.M.J., Abed, A.S., Hussin, Z.S., & Abdulhusein, A.A. (2017). Effect of nanoparticles on in vitro microtuberization of potato cultivars (Solanum tuberosum). Journal of Biotechnology Research Center, 11(1), 57–61.
- Asgari-targhi, G., Iranbakhsh, A., Oraghi, Z., & Hatami, A. (2021). Synthesis and characterization of chitosan encapsulated zinc oxide (ZnO) nanocomposite and its biological assessment in pepper (Capsicum annuum) as an elicitor for in vitro tissue culture applications. International Journal of Biological Macromolecules, 189, 170–182. https://doi.org/10.1016/j.ijbiomac.2021.08.117
- Ashraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.
- Bandara, P.M.S., & Tanino, K.K. (1995). Paclobutrazol enhances minituber production in Norland potatoes. Journal of Plant Growth Regulation, 14(3), 151–155.
- Borna, R.S., Hoque, M., & Sarker, R. (2019). In vitro microtuber induction and regeneration of plantlets from microtuber discs of cultivated potato (Solanum tuberosum). Plant Tissue Culture and Biotechnology, 29(1), 63–72. https://doi.org/10.3329/ptcb.v29i1.41979
- Castiglioni, P., Bell, E., Lund, A., Rosenberg, A.F., Galligan, M., Hinchey, B.S., Bauer, S., Nelson, D.E., & Bensen, R.J. (2018). Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct, 2(2), e00040.
- Chibu, H. (2000). Effects of chitosan applications on the growth of several crops. 5(3), 182.
- Dashti, F., Parvizi, K., Ashraf, H., Chaeichi, M.R., & Esna Ashari, M. (2013). Effects of different concentrations of paclobutrazul and plantlet density on minituber production in potato cv. Sante. Iranian Journal of Horticultural Science, 44(1), 11-20.
- Demiral, T., & Türkan, I. (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161(10), 1089–1100.
- Donnelly, D.J., Coleman, W.K., & Coleman, S.E. (2003). Potato microtuber production and performance: a review. American Journal of Potato Research, 80(2), 103–115.
- Fatima, B., Usman, M.U.H.A.M.M.A.D., Ahmad, I.M.T.I.A.Z., & Khan, I.A. (2005). Effect of explant and sucrose on microtuber induction in potato cultivars. International Journal of Agriculture and Biology, 7(1), 63-66.
- Garkeroodi, P.G., Zaare-Nahandi, F., Azar, A.M., Panahandeh, J., & Dadpour, M.R. (2016). Optimization of in vitro microtuberization of potato (Solanum tuberosum cv. Agria) using paclobutrazole and uniconazol. Iranian Journal of Horticultural Science, 47(2).
- Gohari, G., Zareei, E., Kulak, M., Labib, P., Mahmoudi, R., Panahirad, S., Jafari, H., Mahdavinia, G., Juárez-Maldonado, A., & Lorenzo, J.M. (2021). Improving the berry quality and antioxidant potential of flame seedless grapes by foliar application of chitosan–phenylalanine nanocomposites (CS–Phe NCs). Nanomaterials, 11(9), 2287.
- Guru, A., Dwivedi, P., Kaur, P., & Pandey, D.K. (2021). Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. South African Journal of Botany.
- Hamza, E.M. (2019). Improvement of potato micropropagation and microtubers formation as affected by nanoparticles. Middle East Journal of Agriculture Research, 08(02), 525–532.
- Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2), 313–326.
- Jianglian, D., & Shaoying, Z. (2013). Application of chitosan based coating in fruit and vegetable preservation: a review. Journal Food Processing Technology, 4(5), 227.
- Kim, D.H., Gopal, J., & Sivanesan, I. (2017). Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Advances, 7(58), 36492–36505. https://doi.org/10.1039/c7ra07025j
- Kumar, V., Shriram, V., Hoque, T. S., Hasan, M., Burritt, D.J., & Hossain, M. A. (2017). Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms. In Stress Signaling in Plants: Genomics and Proteomics Perspective, 2, 111–133.
- Kwak, S.Y., Lew, T.T.S., Sweeney, C.J., Koman, V.B., Wong, M.H., Bohmert-Tatarev, K., & Strano, M.S. (2019). Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology, 14(5), 447-455.
- Macháčková, I., Konstantinova, T.N., Sergeeva, L.I., Lozhnikova, V.N., Golyanovskaya, S.A., Dudko, N.D., Eder, J., & Aksenova, N.P. (1998). Photoperiodic control of growth, development and phytohormone balance in Solanum tuberosum. Physiologia Plantarum, 102(2), 272–278.
- Mahmoudi, R., Razavi, F., Rabiei, V., Gohari, G., & Palou, L. (2022). Application of Glycine betaine coated chitosan nanoparticles alleviate chilling injury and maintain quality of plum (Prunus domestica) fruit. International Journal of Biological Macromolecules, 207, 965–977.
- Malerba, M., & Cerana, R. (2020). Chitin- and chitosan-based derivatives in plant protection against biotic and abiotic stresses and in recovery of contaminated soil and water. Polysaccharides, 1(1), 21–30. https://doi.org/10.3390/polysaccharides1010003
- Mamiya, K., Tanabe, K., & Onishi, N. (2020). Production of potato (Solanum tuberosum) microtubers using plastic culture bags. Plant Biotechnology, 37(2), 233–238. https://doi.org/10.5511/PLANTBIOTECHNOLOGY.20.0312A
- Meena, M., Pilania, S., Pal, A., Mandhania, S., Bhushan, B., Kumar, S., Gohari, G., & Saharan, V. (2020). Cu-chitosan nano-net improves keeping quality of tomato by modulating physio-biochemical responses. Scientific Reports, 10(1), 1–11.
- Mulugeta Diro, M.F. (2014). Microtuber induction of two potato (Solanum tuberosum) varieties. Advances in Crop Science and Technology, 02(02), 2–4. https://doi.org/10.4172/2329-8863.1000122
- Sadawarti, M.J., Pandey, K.K., Singh, B.P., & Samadiya, R.K. (2016). A review on potato microtuber storability and dormancy. Journal of Applied and Natural Science, 8(4), 2319-2324.
- Saharan, V., & Pal, A. (2016). Current and future prospects of chitosan-based nanomaterials in plant protection and growth. In Chitosan Based Nanomaterials in Plant Growth and Protection (pp. 43–48). Springer.
- Santo Pereira, A.E., Silva, P.M., Oliveira, J.L., Oliveira, H.C., & Fraceto, L.F. (2017). Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces, 150, 141-152.
- Shouqiang, O., & Langlai, X. (2003). Effects of chitosan on nutrient qualities and some agronomic characters of non-heading Chinese cabbage. Plant Physiology Communications, 39(1), 21–24.
- Willmer, C., & Fricker, M. (1996). Stomata (Vol. 2). Springer Science & Business Media.
- Yagiz, A.K., Yavuz, C., Tarim, C., Demirel, U., & Caliskan, M.E. (2020). Effects of growth regulators, media and explant types on microtuberization of potato. American Journal of Potato Research, 97(5), 523-530.
- Yu, J., Wang, D., Geetha, N., Khawar, K.M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904.
|