- Adab, H., Morbidelli, R., Saltalippi, C. Moradian, M.,& Ghalhari, G.A.F, )2020(. Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11): https://doi.org/10.3390/w12113223.
- Breiman, L. (2001). Random forests. Machine Learn. 45: 5–32.https://doi.org/10.1023/A:1010933404324.
- Chen, Z., Zhu, Z., Jiang, H., & Sun, S. (2020). Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology 591: 125286. https://doi.org/10.1016/j.jhydrol.2020.125286.
- Dos Santos Farias, D.B., Althoff, D., Rodrigues, L.N., & Filgueiras, R. (2020). Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier. Theoretical and Applied Climatology 142: 1481-1492. https://doi.org/10.1007/s00704-020-03380-4.
- Fazeli Khiavi, A., Salahi, B., & Goodarzi, M. (2020). Assessment effects of climate change on changes in potential evapotranspiration in the Moghan Plain by rcps. Watershed Engineering and Management 12: 977-993. (In Persian). https://doi.org/10.22092/ijwmse.2019.126245.1649.
- Feng, K., & Tian, J. (2021). Forecasting reference evapotranspiration using data mining and limited climatic data. European Journal of Remote Sensing 54: 363-371. https://doi.org/10.1080/22797254.2020.1801355.
- Ferreira, L.B., da Cunha, F.F., de Oliveira, R.A., & Fernandes Filho, E.I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of Hydrology 572: 556-570. https://doi.org/10.1016/j.jhydrol.2019.03.028.
- Gavili, S., Sanikhani, H., Kisi, O., & Mahmoudi, M.H. (2018). Evaluation of several soft computing methods in monthly evapotranspiration modelling. Meteorological Applications 25: 128-138. https://doi.org/10.1002/met.1676.
- Gopinathan, K.K. (1988). A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Solar Energy 41: 499-502. https://doi.org/10.1016/0038-092X(88)90052-7.
- Hagan, M.T., Demuth, H.B., & Beale, M.H. (1996). Neural Design PWS Publishing Co.
- Hocking, R.R. (2013). Methods and applications of linear models: regression and the analysis of variance, John Wiley & Sons.
- Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., & Chau, K.-W. (2019). Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Engineering Applications of Computational Fluid Mechanics 13: 811-823. https://doi.org/10.1080/19942060.2019.1645045.
- Kang, T., Li, Z., & Gao, Y. (2021). Spatiotemporal variations of reference evapotranspiration and its determining Climatic factors in the Taihang Mountains, China. Water 13: 3145. https://doi.org/10.3390/w13213145.
- Karimipour, A., & Banitalebi, G. (2020). Sensitivity analysis of meteorological data in estimating reference evapotranspiration with the minimum data using wavelet-neuro-fuzzy, ANN and ANFIS models. Journal of Soil and Water Resources Conservation 9(3):47-72. (In Persian).
- Keikhosravi, G., Rezaee, A., Mohamadi, Z., & Baghaee, M. (2014). The Estimation of Reference Evapotranspiration in (reference grass) 5 synoptic Station province of Kermanshah with using REF-ET Model. National conference of new ideas in sustainable agriculture. Islamic Azad University, Borujerd branch 1-18, (In Persian).
- Majozi, N.P., Mannaerts, C.M., Ramoelo, A., Mathieu, R., & Verhoef, W. (2021). Uncertainty and sensitivity analysis of a remote-sensing-based penman–Monteith model to meteorological and land surface input variables. Remote Sensing 13: 882. https://doi.org/10.3390/rs13050882.
- Mattar, M.A., (2018). Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt. Agricultural Water Management 198: 28-38. https://doi.org/10.1016/j.agwat.2017.12.017.
- Monteith, J. (1965). The state andmovement of water in living organisms. In: 19th Symposia of the Society for Experimental Biology. Cambridge University Press, London 205–234.
- Ndiaye, P.M., Bodian, A., Diop, L., Deme, A., Dezetter, A., Djaman, K., & Ogilvie, A. (2020). Trend and sensitivity analysis of reference evapotranspiration in the Senegal river basin using NASA meteorological data. Water 12: 1957. https://doi.org/10.3390/w12071957.
- Panaitescu, L., Ilie, C., Lungu, M., Popescu, M., Lungu, D., & Nita, S. (2014). Modern approach to the phenomenon of drought and aridity in Central and South Dobrudja. Journal of Environmental Protection and Ecology 15: 110-122.
- Picton, P. (2000). Neural Networks, 2nd edn. Palgrave, New York.
- Rai, R., Rajput, M., Agrawal, M., & Agrawal, S. (2011). Gaseous air pollutants: a review on current and future trends of emissions and impact on agriculture. Journal of Scientific Research 55(771): 1.
- Raza, A., Shoaib, M., Khan, A., Baig, F., Faiz, M.A., & Khan, M.M. (2020). Application of non-conventional soft computing approaches for estimation of reference evapotranspiration in various climatic regions. Theoretical and Applied Climatology 139: 1459-1477. https://doi.org/10.1007/s00704-019-03007-3.
- Raziei, T., Daneshkar Arasteh, P., & Saghafian, B. (2005). Annual rainfall trend analysis in arid and semi-arid regions of central and eastern Iran. Water and Wastewater 54: 73-81 (In Persian).
- Saggi, M.K., & Jain, S. (2019). Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Computers and Electronics in Agriculture 156: 387-398. https://doi.org/10.1016/j.compag.2018.11.031.
- Shahryar, F., Gandomkar, A., & Hashempour, R. (2019). Optimal locating of the new towns in Qazvin Province based on climatic parameters. Geography and Environmental Planning 29: 19-34. (In Persian). https://doi.org/10.22108/gep.2018.98275.0.
- Shiri, J., Marti, P., Karimi, S., & Landeras, G. (2019). Data splitting strategies for improving data driven models for reference evapotranspiration estimation among similar stations. Computers and Electronics in Agriculture 162: 70-81. https://doi.org/10.1016/j.compag.2019.03.030.
- Singh, A., Haghverdi, A., Öztürk, H.S., & Durner, W. (2020). Developing pseudo continuous pedotransfer functions for international soils measured with the evaporation method and the HYPROP system: I. The soil water retention curve. Water 12: 3425. https://doi.org/10.3390/w12123425.
- Sandhu, R., & Irmak, S. (2020). Performance assessment of hybrid-maize model for rainfed, limited and full irrigation conditions. Agricultural Water Management 242: 106402. https://doi.org/10.1016/j.agwat.2020.106402.
- Tabari, H., Martinez, C., Ezani, A., & Hosseinzadeh Talaee, P. (2013). Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration. Irrigation science 31: 575-588. https://doi.org/10.1007/s00271-012-0332-6.
- Üneş, F., Kaya, Y.Z., & Mamak, M. (2020). Daily reference evapotranspiration prediction based on climatic conditions applying different data mining techniques and empirical equations. Theoretical and Applied Climatology 141: 763-773. https://doi.org/10.1007/s00704-020-03225-0.
- Vapnik, V.N. (2000). The nature of statistical learning theory, ser. Statistics for engineering and information science, Springer, New York, 21:1003–1008.
- Willmott, C.J., Robeson, S.M., & Matsuura, K. (2012). A refined index of model performance. International Journal of climatology 32: 2088-2094. https://doi.org/10.1002/joc.2419.
- Yang, L., Feng, Q., Li, C., Si, J., Wen, X., & Yin, Z. (2017). Detecting climate variability impacts on reference and actual evapotranspiration in the Taohe River Basin, NW China. Hydrology Research 48: 596-612. https://doi.org/10.2166/nh.2016.252.
|