[1] E. M. Christenson, K. S. Ansecth, J. J. V. D. Bcuckcn, C. K. Chan, B. Ercan, J. A. Jansen, C. T. Laurencin, W. J. Li, R. Murugan, L. S. Nair, S. Ramakrishna, Tuan, R. S. "Nanobiomaterials application in orthopedics", Journal of Orthopedic Research, vol. 25, pp. 11-22, 2006.
[2] L. Ghorbanian, R. Emadi, S.M. Razavi, H. Shin, and A. Teimouri, "Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillaofacial bone regeneration", International Journal of Biological Macromolecules, vol. 58, pp. 275-280, 2013.
[3] Y. Xin, T. Hu, and P.K. Chu, "In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review", Acta biomaterialia, Vol. 7, Pp.1452-1459, 2011.
[4] J.G., siler, and J. Johnson, "Lliac crest autogenous bone grafting: donor site complications", Journal South Orthopedic Association, vol. 9, pp. 91-97, 2000.
[5] Y. Tabata, "Recent progress in tissue engineering", Drug Discovery Today, vol. 6, pp. 483-487, 2001.
[6] M. Saini, Y. Singh, P. Arora, V. Arora, and K. Jain, "Implant biomaterials: comprehensive review", World Journal of Clinical Cases: WJCC, vol. 3, pp. 52-57, 2015.
[7] K.S. Katti, "Biomaterials in total joint replacement", Colloids and Surfaces B: Biointerfaces, vol. 39, pp. 133-142, 2004.
[8] A. Zomorodian, M. P. Garcia, T. Moura e Silva, J. Fernandes, M. H. Fernandes, and M. F. Montemor, "Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy", Acta Biomaterialia , vol. 9, pp. 8660-8670, 2013.
[9] T. Hanas, T.S. Kumar, G. Perumal, and M. Doble, "Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating", Materials Science and Engineering: C, vol. 65, pp. 43-50, 2016.
[10] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, "Current status on clinical applications of magnesium based orthopaedic implants: A review from clinical translational perspective", Biomaterials, vol. 112, pp. 287-302, 2017.
[11] D. Bian, W. Zhou, J. Deng, Y. Liu, W. Li, and X. Chu, "Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications", Acta biomaterialia, vol. 64, pp. 421-436, 2017.
[12] N. Li, and Y. Zheng, "Novel magnesium alloys developed for biomedical application: a review", Journal of Materials Science & Technology, vol. 29, pp. 489-502, 2013.
[13] Y. Chen, Z. Xu, C. Smith, and J. Sankar, "Recent advances on the development of magnesium alloys for biodegradable implants", Acta biomaterialia, vol. 10, pp. 4561-4573, 2014.
[14] S. Najeeb, Z. Khurshid, J.P. Matinlinna, F. Siddiqui, M. Z. Nassani, and K. Baroudi, "Nanomodified peek dental implants: Bioactive composites and surface modification-A review", International journal of dentistry, pp. 261-271, (2015).
[15] S. Sadeghzade, F. Shamoradi, R. Emadi, and F. Tavangarian, "Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method", Journal of the mechanical behavior of biomedical materials, vol. 68, pp. 1-7, (2017).
[16] Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, "45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering", Biomaterials, vol. 27, pp. 2414-2425, 2006.
[17] H. Bakhsheshi-Rad, E. Hamzah, A. Ismail, M. Aziz, M. Kasiri-Asgarani, and E. Akbari, et al., "Synthesis of a novel nanostructured zinc oxide/baghdadite coating on Mg alloy for biomedical application: In-vitro degradation behavior and antibacterial activities", Ceramics International, vol. 43, pp. 14842-14850, 2017.
[18] A. Golshirazi, M. Kharaziha, and M. Golozar, "Polyethylenimine/Kappa Carrageenan:"Micro-arc Oxidation Coating for Passivation of Magnesium Alloy", Carbohydrate Polymers, vol. 167, pp. 185-195, 2017.
[19] T. Hanas, T.S. Kumar, G. Perumal, and M. Doble, "Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating", Materials Science and Engineering: C, vol. 65, pp. 43-50, 2016.
[20] P.N. Chavan, M. m. Bahir, R. u. Mene, M. P. Mahabole, and R. S. Khairnar, "Study of nanobiomaterial hydroxyapatite in simulated body fluid: formation anf growth of apatite", Materials Science and Engineering :B, vol. 168, pp 224-230, 2010.
[21] S. Sadeghzade, F. Shamoradi, R. Emadi, and F. Tavangarian, "Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method", Journal of the mechanical behavior of biomedical materials, vol. 68, pp. 1–7, 2017.
[22] M. Razavi, M. Faith, O. Savabi, B. H. Beni, D. Vashaee, and L. Tayebi, "Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi207) coating an biodegradable magnesium alloy for biomedical applications", Colloids and Surfaces B:Biointerface, vol.117, pp 432-440, 2014.
[23] Y. Zhang, and C. W. Yan, "Development of anodic film on Mg alloy AZ91D", Surface and Coatings Technology", vol. 201, pp. 2381–2386, 2006.
[24] F. Brusciotti, D. Snihirova, H. Xue, M. Montemor, S. Lamaka, and M. Ferreira, "Hybrid epoxy–silane coatings for improved corrosion protection of Mg alloy", Corrosion Science, vol. 67, pp. 82–90, 2018.
[25] L. d. Y. Pozzo, T. F. da Conceição, A. Spinelli, N. Scharnagl and A.T. Pires, "Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets", Carbohydrate polymers, vol. 181, pp. 71-77, 2018.
[26] M. Kong, X. Chen, K. Xing, and H. Park,"Antimicrobial properties of chitosan and mode of action:a state of art review", International Journal of Food Microbiology,vol.144, no.1,pp.51-63, 2010.
[27] F. Tavangarian, and R. Emadi, "Nanostructure effects on the bioactivity of forsterite bioceramic", Material Letter, vol. 65, pp. 740-743, 2011.