- Abad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2002). Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology 82: 241-245. https://doi.org/10.1016/S0960-8524(01)00189-4.
2- Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G.H., & Pourbabaee, A.A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil and Environment 61: 475-482. https://doi.org/10.17221/117/2015-PSE.
3- Allaire-Leung, S., Caron, J., & Parent, L. (1999). Changes in physical properties of peat substrates during plant growth. Canadian Journal of Soil Science 79: 137-139. https://doi.org/ 10.4141/S98-060.
4- Awang, Y., Shazmi Shahron, A., Rosli, B.M., & Selamat, A. (2009). Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American Journal of Agricultural and Biological Sciences 4: 63-71. https://doi.org/10.3844/ajabssp.2009.63.71.
5- Bakry, M., Lamhamedi, M.S., Caron, J., Bernier, P.Y., El Abidine, A.Z., Stowe, D.C., & Margolis, H.A. (2013). Changes in the physical properties of two Acacia compost-based growing media and their effects on carob ( Ceratonia siliqua L.) seedling development. New Forests 44: 827-847. https://doi.org/10.1007/s11056-013-9368-6.
6- Banitalebi, G., Mosaddeghi, M.R., & Shariatmadari, H. (2019). Feasibility of agricultural residues and their biochars for plant growing media: Physical and hydraulic properties. Waste Management 87: 577-589. https://doi.org/10.1016/j.wasman.2019.02.034.
7- Banitalebi, G., Mosaddeghi, M.R., & Shariatmadari, H. (2021). Evaluation of physico-chemical properties of biochar-based mixtures for soilless growth media. Journal of Material Cycles and Waste Management 23: 950-964. https://doi.org/10.1007/s10163-021-01181-z.
8- Brewer, C.E., Chuang, V.J., Masiello, C.A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K., & Davies, C.A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy 66: 176-185. https://doi.org/10.1016/j.biombioe.2014.03.059.
10- Bunt, A.C. (1988). Media and Mixes for Container-Grown Plants. 2nd Ed. Unwin Hymnan Ltd., London, Springer, London.
11- Bures, S., Pokorny, F.A., & Ware, G.O. (1993). Estimating shrinkage of container media mixtures with linear and/or regression models. Communications in Soil Science and Plant Analysis 24: 315-323. https://doi.org/10.1080/00103629309368801.
12- Cannavo, P., Hafdhi, H., & Michel, J. (2011). Impact of root growth on the physical properties of peat substrate under a constant water regimen. HortScience 46: 1394-1399. https://doi.org/10.21273/HORTSCI.46.10.1394.
13- Caron, J., Morel, P., Rivière, L.M., & Guillemain, G. (2010). Identifying appropriate methodology to diagnose aeration limitations with large peat and bark particles in growing media. Canadian Journal of Soil Science 90: 481-494 . http://doi.org/10.4141/CJSS09015.
16- Deepagoda, T.C., Chen Lopez, J.C., Møldrup, P., De Jonge, L.W., & Tuller, M. (2013). Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media. Journal of Hydrology 502: 120-127. https://doi.org/10.1016/j.jhydrol.2013.08.031.
17- Gupta, M., Yang, J., & Roy, C. (2002). Density of softwood bark and softwood char: procedural calibration and measurement by water soaking and kerosene immersion method. Fuel 81: 1379-1384. https://doi.org/10.1016/S0016-2361(02)00043-1.
19- Kerloch, E., & Michel, J.C. (2015). Pore tortuosity and wettability as main characteristics of the evolution of hydraulic properties of organic growing media during cultivation. Vadose Zone Journal 14: 1-7. http://doi.org/10.2136/v14.11.0162.
20- Kim, H.S., Kim, K.R., Yang, J.E., Ok, Y.S., Kim, W.I., Kunhikrishnan, A., & Kim, K.H. (2017). Amelioration of horticultural growing media properties through rice hull biochar incorporation. Waste and Biomass Valorization 8: 483-492 . https://doi.org/10.1007/s12649-016-9588-z.
21- Massa, D., Bonetti, A., Cacini, S., Faraloni, C., Prisa, D., Tuccio, L., & Petruccelli, R. (2019). Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium. Horticulture, Environment, and Biotechnology 60: 871-881. https://doi.org/10.1007/s13580-019-00169-x.
22- Méndez, A., Cárdenas-Aguiar, E., Paz-Ferreiro, J., Plaza, C., & Gascó, G. (2017). The effect of sewage sludge biochar on peat-based growing media. Biological Agriculture & Horticulture 33: 40-51. https://doi.org/10.1080/01448765.2016.1185645.
23- Michel, J.C., Kerloch, E., Bozon, E., & Cannavo, P. (2011). Consequences of root development on the evolution of hydraulic properties of peat growing media under a constant and optimal water regime. Acta Horticulturae 1013: 159–165. http://doi.org/10.17660/ActaHortic.2013.1013.18.
24- Michel, J.C., & Kerloch, E. (2017). Evolution of hydraulic properties and wettability of organic growing media during cultivation according to irrigation strategies. Scientia Horticulturae 217: 28-35. http://dx.doi.org/10.1016/j.scienta.2017.01.023.
25- Nash, V.E., & Laiche, A.J. (1981). Changes in the characteristics of potting media with time. Communications in Soil Science and Plant Analysis 12: 1011-1020. https://doi.org/10.1080/00103628109367213.
27- Raviv, M., Wallach, R., Silber, A., Medina, Sh., & Krasnovsky, A. (1999). The effect of hydraulic characteristics of volcanic materials on yield of roses grown in soiless culture. Journal of the American Society for Horticultural Science 124: 205-209. https://doi.org/10.21273/JASHS.124.2.205.
28- Raviv, M., & Lieth J.H. (2008). Significance of soilless culture in agriculture. pp. 1–11. In: Soilless Culture: Theory and Practice. Raviv, M., & Lieth, J.H. (Eds.). Elsevier, Amsterdam, The Netherlands.
29- Safadoust, A., Mosaddeghi, M.R., Mahboubi, A.A., & Yousefi, G. (2012). Effects of wetting/drying, freezing/thawing and earth worm activities on soil hydraulic properties. Journal of Water and Soil 26: 340-348. (In Persian with English abstract). https://doi.org/10.22067/jsw.v0i0.14160.
30- Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report 5: 17-31. http://doi.org/10.1016/j.gca.2008.01.010.
31- Turunen, M., Hyväluoma, J., Heikkinen, J., Keskinen, R., Kaseva, J., Koestel, J., & Rasa, K. (2019). Quantifying physical properties of three Sphagnum‐based growing media as affected by drying–wetting cycles. Vadose Zone Journal 18: 1-10. http://doi.org/10.2136/vzj2019.04.0033.
32- Zhang, L., Sun, X., Tian, Y., & Gong, X. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae 176: 70-78. https://doi.org/10.1016/j.scienta.2014.06.021.
|