- Abichandani, S.L. (2007). The potential impact of the invasive species Arundo donax on water resources along the Santa Clara River: seasonal and diurnal transpiration. University of California, Los Angeles. pp 44. http://dx.doi.org/10.3390/hydrology2030134
- Angelini, L.G., Ceccarini, L., Nassi, O., Di Nasso, N., & Bonari, E. (2009). Comparison of Arundo donax and Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33, 635–643. https://doi.org/10.1016/j.biombioe.2008.10.005
- Baker, H. (1974). The evolution of weeds. Annual Review of Ecology and Systematics 5, 24.
- Bell, G.P. (1997). Ecology and management of Arundo donax, and approaches to riparian habitat estoration in southern California. In: Plant Invasions: Studies from North America and Europe (eds Brock JH, Wade M, Pysek P, Green D), pp. 103–113.
- Beringer, T., Lucht, W., & Schaphoff, S. (2011). Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Global Change Biology Bioenergy 3, 299–312. https://doi.org/10.1111/j.1757-1707.2010.01088
- Centritto, M., Loreto, F., & Chartzoulakis, K. (2003). The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant, Cell & Environment, 26, 585–594. https://doi.org/10.1046/j.1365-3040.2003.00993
- Chaves, M.M., Costa, J.M., & Saibo, N.J.M. (2011). Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research, 57, 49–104. https://doi.org/10.1016/B978-0-12-387692-8.00003-5
- Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annual Botanical, 103, 551–560. https://doi.org/10.1093/aob/mcn125
- Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting. Trends in Plant Science, 5, 187–188. https://doi.org/10.1016/S1360-1385(00)01625-3
- Cosentino, S.L., Patanè, C., Sanzone, E., Testa, G., & Scordia, D. (2016). Leaf gas exchange, water status and radiation use efficiency of giant reed (Arundo donax) in a changing soil nitrogen fertilization and soil water availability in a semi-arid Mediterranean area. European Journal of Agronomy, 72, 56–69. https://doi.org/10.1016/j.eja.2015.09.011
- Curt, M.D., Sanz, M., & Mauri, P.V. (2018). Effect of water regime change in a mature Arundo donax crop under a xeric Mediterranean climate. Biomass and Bioenergy, 115, 203–209. https://doi.org/10.1016/j.biombioe.2018.04.018
- Czech, B., & Krausman, P. (1997). Distribution and causation of species endangerment in the United State. Invasive Plant Science and Management, 4, 439–444.
- Danin, A. (2004). Arundo (Gramineae) in the Mediterranean reconsidered. Willdenowia, 34, 361–369.
- Decruyenaere, J.G., & Holt, J.S. (2005). Ramet demography of a clonal invader, Arundo donax (Poaceae), in Southern California. Plant and Soil, 277, 41–52.
- Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 269–279. https://doi.org/10.1055/s-2004-820867
- Food and Agriculture Organization of the United Nations. (2013). FAOSTAT. Agri-Environmental Indicators. Available at http://faostat3.fao.org (accessed 05 March 2014).
- Gasith, A., & Resh, V.H. (1999). Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics, 30, 51-81.
- Gordon, D.R., Tancig, K.J., Onderdonk, D.A., & Gantz, C.A. (2011). Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass and Bioenergy, 35, 74–79. https://doi.org/10.1016/j.biombioe.2010.08.029
- Grzesiak, M.T., Waligórski, P., Janowiak, F., Marcińska, I., Hura, K., Szczyrek, P., & Głąb, T. (2013). The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiol Plant, 35, 549–565.
- Haworth, M., Cosentino, S.L., Marino, G. (2017). Physiological responses of Arundo donax ecotypes to drought: a common garden study. GCB Bioenergy, 9, 132–143. https://doi.org/10.1111/gcbb.12348
- Hernández, I., Alegre, L., & Munné-Bosch, S. (2012). Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiology, 24, 1303–1311. https://doi.org/10.1093/treephys/24.11.1303
- Jørgensen, U. (2011). Benefits versus risks of growing biofuel crops: the case of Miscanthus. Current Opinion in Environmental Sustainability, 3, 24–30. https://doi.org/10.1016/j.cosust.2010.12.003
- Juneau, K.J., & Tarasoff, C.S. (2013). The seasonality of survival and subsequent growth of common reed (Phragmites australis) rhizome fragments. Invasive Plant Science and Management, 6, 79-86. https://doi.org/10.1614/IPSM-D-12-00051.1
- Lambert, A.M., Dudley, T.L., & Saltonstall, K. (2010). Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Science and Management, 3, 489–494. http://dx.doi.org/10.1614/IPSM-D-10-00031.1
- Lauteri, M., Haworth, M., Serraj, R., Monteverdi, M.C., & Centritto, M. (2014). Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PLoS One, 9, e109054. https://doi.org/10.1371/journal.pone.0109054
- Lawlor, D.W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25, 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814
- Long, S.P., & Bernacchi, C.J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany 54, 2393–2401. https://doi.org/10.1093/jxb/erg262
- Loreto, F., & Fineschi, S. (2015). Reconciling functions and evolution of isoprene emission in higher plants. The New Phytologist, 206, 578–582. https://doi.org/10.1111/nph.13242
- Mann, J., Barnet, J., Guy, B., & Joseph, M. (2013). Miscanthus 3 giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. Global Change Biology, 5, 693-700. https://doi.org/10.1111/gcbb.12039
- Mantineo, M., D’Agosta, G.M., Copani, V., Patanè, C., & Cosentino, S.L. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114, 204–213. https://doi.org/10.1016/j.fcr.2009.07.020
- Mariani, C., Cabrini, R., Danin, A. (2010). Origin, diffusion and reproduction of the giant reed (Arundo donax): a promising weedy energy crop. Annals of Applied Biology, 157, 191–202. https://doi.org/10.1111/j.1744-7348.2010.00419.x
- Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808
- Pilu, R., Cassani, E., & Landoni, M. (2014). Genetic characterization of an Italian giant reed (Arundo donax) clones collection: exploiting clonal selection. Euphytica, 196, 169–181.
- Signarbieux, C., & Feller, U. (2011). Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. Environment and Experimental Botany, 71, 192–197. https://doi.org/10.1016/j.envexpbot.2010.12.003
- Silva, E.N., Ferreira-Silva, S.L., Fontenele, A.V., Ribeiro, R.V., Viégas, R.A., & Silveira, J.A. (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167, 1157–1164. https://doi.org/10.1016/j.jplph.2010.03.005
- Steinmaus, S., & Norris, R.F. (2002). Growth analysis and canopy architecture of velvetleaf grown under light conditions representative of irrigated Mediterranean-type agroecosystems. Weed Science, 50, 42-53. https://doi.org/10.1614/0043-1745(2002)050[0042:GAACAO]2.0.CO;2
- Trnka, M., Olesen, J.E., & Kersebaum, K.C. (2011). Agroclimatic conditions in Europe under climate change. Global Change Biology, 17, 2298–2318. https://doi.org/10.1111/j.1365-2486.2011.02396
- Valli, F., Trebbi, D., Zegada-Lizarazu, W., Monti, A., Tuberosa, R., & Salvi, S. (2017). In vitro physical mutagenesis of giant reed (Arundo donax). GCB Bioenergy, 9, 1380–1389. https://doi.org/10.1111/gcbb.12458
- Watts, D.A., & Moore, G.W. (2011). Water-use dynamics of an invasive reed, Arundo donax, from leaf to stand. Wetlands, 31, 725–734. http://dx.doi.org/10.1007/s13157-011-0188-1
- Wilhelm, C. (2014) Salt stress resistance – multisite regulation in focus. Journal Plant Physiology, 171, 1. http://dx.doi.org/10.1016/j.jplph.2013.11.001
- Zub, H.W., & Brancourt-Hulmel, M. (2010). Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agronomy for Sustainable Development, 30, 201–214. http://dx.doi.org/10.1007/978-94-007-0394-0_21
- Zúñiga, E., Argandoña, V.H., Niemeyer, H.M., & Corcuera, L.J. (1983). Hydroxamic acid content in wild and cultivated gramineae. Phytochemistry, 22(12), 2665-2668.
|