تعداد نشریات | 50 |
تعداد شمارهها | 1,875 |
تعداد مقالات | 19,726 |
تعداد مشاهده مقاله | 12,388,587 |
تعداد دریافت فایل اصل مقاله | 7,682,311 |
Distribution of antimicrobial resistance and some widespread extended-spectrum beta-lactamase genes in different phylogroups of Shiga toxin-producing Escherichia coli (STEC) isolates of ruminant origin | ||
Iranian Journal of Veterinary Science and Technology | ||
مقاله 2، دوره 15، شماره 1 - شماره پیاپی 30، تیر 2023، صفحه 11-19 اصل مقاله (705.83 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22067/ijvst.2022.79046.1197 | ||
نویسندگان | ||
Rwida Tomeh1؛ Mahdi Askari Badouei2؛ Gholamreza Hashemi Tabar* 1؛ Hamideh Kalateh Rahmani1 | ||
1Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
2Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran | ||
چکیده | ||
Limited data is available on the prevalence of extended-spectrum beta-lactamase (ESBL) genes in Shiga toxin-producing Escherichia coli (STEC) isolates of ruminant origin. This study determined the molecular prevalence of ESBL-encoding genes (blaCTX-M, blaTEM, blaSHV and blaOXA) and antimicrobial-resistance (AMR) of 58 STEC isolates recovered from cattle (n= 32), sheep and goats (n= 26). In the current study, ESBL genes were identified by the molecular technique, while phenotypic AMR against six antibiotics (amoxicillin-clavulanic acid, tetracycline, neomycin, florfenicol, enrofloxacin and sulfamethoxazole-trimethoprim) were tested by disc diffusion method. Phylogenetic groups were also determined by a PCR scheme. Isolates were categorized into five phylogroups (A, B1, C, D and E) and B1 was the most prevalent phylogenetic group (43; 74.1%). Statistical analysis revealed significant association between phylogroup D and small ruminants (sheep and goats, p= 0.014). Moreover, the highest rates of antimicrobial resistance were related to tetracycline (25.9%) and neomycin (22.4%). Resistant isolates to tetracycline (p= 0.001), trimethoprim-sulfamethoxazole (p= 0.013) and neomycin (p= 0.000) were significantly prevalent among strains recovered from cattle. In addition, the majority of MDR strains were also had a significant distribution among cattle isolates (p= 0.001). In the current study, prevalence of ESBL positive STEC was 12.06% (7/58). Genes blaCTX-M and blaTEM were detected separately and in combination in bovine isolates. However, only one STEC strain of small ruminants harbored blaTEM. In conclusion, it seems that cattle isolates are notable sources of different AMR traits which could be a threat to veterinary sections, public health and food hygiene, in particular. | ||
کلیدواژهها | ||
E. coli؛ STEC؛ antimicrobial resistance (AMR)؛ ESBL؛ blaCTX-M؛ blaTEM؛ Phylogroup | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
1. E tcheverría AI, Padola NL. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence. 2013;4(5):366–72. Doi: 10.4161/viru.24642. 2. EFS and ECDC (European Food Safety Authority and European Center for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA J. 2021;19(2):6406. Doi: 10.2903/j.efsa.2021.6406. 3. Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel). 2020;12(9):607. Doi: 10.3390/toxins12090607. 4. Topalcengiz Z, Jeamsripong S, Spanninger PM, Persad AK, Wang F, Buchanan RL, et al. Survival of Shiga Toxin-Producing Escherichia coli in Various Wild Animal Feces That May Contaminate Produce. J Food Prot. 2020;83(8):1420–9. Doi: 10.4315/JFP-20-046. 5. de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016 Nov;13(11):e1002184. Doi: 10.1371/journal.pmed.1002184. 6. Djordjevic SP, Stokes HW, Roy Chowdhury P. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol. 2013;4:86. Doi: 10.3389/fmicb.2013.00086. 7. Pavez-Muñoz E, González C, Fernández-Sanhueza B, Sánchez F, Escobar B, Ramos R, et al. Antimicrobial Usage Factors and Resistance Profiles of Shiga Toxin-Producing Escherichia coli in Backyard Production Systems From Central Chile. Front Vet Sci. 2020;7:595149. Doi: 10.3389/fvets.2020.595149. 8. Stadler T, Meinel D, Aguilar-Bultet L, Huisman JS, Schindler R, Egli A, et al. Transmission of ESBL-producing Enterobacteriaceae and their mobile genetic elements—identification of sources by whole genome sequencing: study protocol for an observational study in Switzerland. BMJ Open. 2018;8(2):e021823. Doi: 10.1136/bmjopen-2018-021823. 9. Davis TK, McKee R, Schnadower D, Tarr PI. Treatment of Shiga Toxin–Producing Escherichia coli Infections. Infect Dis Clin North Am. 2013;27(3):577–97. Doi: 10.1016/j.idc.2013.05.010. 10. Cortimiglia C, Borney MF, Bassi D, Cocconcelli PS. Genomic Investigation of Virulence Potential in Shiga Toxin Escherichia coli (STEC) Strains From a Semi-Hard Raw Milk Cheese. Front Microbiol. 2020;11:629189. Doi: 10.3389/fmicb.2020.629189. 11. Tenaillon O, Skurnik D, Picard B, Denamur E. The Population Genetics of Comensal. Nat Rev Microbiol. 2010;8:207–17. Doi: 10.1038/nrmicro2298. 12. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5(1):58–65. Doi: 10.1111/1758-2229.12019. 13. Rwego IB, Gillespie TR, Isabirye-Basuta G, Goldberg TL. High Rates of Escherichia coli Transmission between Livestock and Humans in Rural Uganda. J Clin Microbiol. 2008;46(10):3187–91. Doi: 10.1128/JCM.00285-08. 14. Venegas-Vargas C, Henderson S, Khare A, Mosci RE, Lehnert JD, Singh P, et al. Factors Associated with Shiga Toxin-Producing Escherichia coli Shedding by Dairy and Beef Cattle. Appl Environ Microbiol. 2016;82(16):5049–56. Doi: 10.1128/AEM.00829-16. 15. G.M. Gonzalez A, M.F. Cerqueira A. Shiga toxin-producing Escherichia coli in the animal reservoir and food in Brazil. J Appl Microbiol. 2020;128(6):1568–82. Doi: 10.1111/jam.14500. 16. Galarce N, Sánchez F, Fuenzalida V, Ramos R, Escobar B, Lapierre L, et al. Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Front Vet Sci. 2020;7. Doi: 10.3389/fvets.2020.00367. 17. Benavides JA, Salgado-Caxito M, Opazo-Capurro A, González Muñoz P, Piñeiro A, Otto Medina M, et al. ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiot (Basel, Switzerland). 2021;10(5). Doi: 10.3390/antibiotics10050510. 18. Dahms C, Hübner N-O, Kossow A, Mellmann A, Dittmann K, Kramer A. Occurrence of ESBL-Producing Escherichia coli in Livestock and Farm Workers in Mecklenburg-Western Pomerania, Germany. PLoS One. 2015;10(11):e0143326. Doi: 10.1371/journal.pone.0143326. 19. Ewers C, Stamm I, Stolle I, Guenther S, Kopp PA, Fruth A, et al. Detection of Shiga toxin- and extended-spectrum β-lactamase-producing Escherichia coli O145:NM and Ont:NM from calves with diarrhoea. J Antimicrob Chemother. 2014;69(7):2005–7. Doi: 10.1093/jac/dku042. 20. Elmonir W, Shalaan S, Tahoun A, Mahmoud SF, Remela EMA, Eissa R, et al. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathog. 2021;13(1):8. Doi: 10.1186/s13099-021-00402-y. 21. Dantas Palmeira J, Ferreira HMN. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon. 2020;6(1):e03206. Doi: 10.1016/j.heliyon.2020.e03206. 22. Schmid A, Hörmansdorfer S, Messelhäusser U, Käsbohrer A, Sauter-Louis C, Mansfeld R. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl Environ Microbiol. 2013;79(9):3027–32. Doi: 10.1128/AEM.00204-13. 23. Ali T, ur Rahman S, Zhang L, Shahid M, Zhang S, Liu G, et al. ESBL-Producing Escherichia coli from Cows Suffering Mastitis in China Contain Clinical Class 1 Integrons with CTX-M Linked to ISCR1. Front Microbiol. 2016;7. Doi: 10.3389/fmicb.2016.01931. 24. Obaidat MM, Gharaibeh WA. Sheep and goat milk in Jordan is a reservoir of multidrug resistant extended spectrum and AmpC beta-lactamases Escherichia coli. Int J Food Microbiol. 2022;377:109834.Doi: 10.1016/j.ijfoodmicro.2022.109834. 25. Xueliang Z, Haoyu Z, Zilian Z, Yongqiang M, Ruichao L, Baowei Y, et al. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates That Cause Diarrhea in Sheep in Northwest China. Microbiol Spectr. 2022;10(4):e01595-22. Doi: 10.1128/spectrum.01595-22. 26. Abdallah HM, Al Naiemi N, Elsohaby I, Mahmoud AFA, Salem GA, Vandenbroucke-Grauls CMJE. Prevalence of extended-spectrum β-lactamase-producing Enterobacterales in retail sheep meat from Zagazig city, Egypt. BMC Vet Res. 2022;18(1):191. Doi: 10.1186/s12917-022-03294-5. 27. Zeng X, Lin J. Factors influencing horizontal gene transfer in the intestine. Anim Heal Res Rev. 2017;18(2):153–9. 10.1017/S1466252317000159. 28. Lee S, Teng L, DiLorenzo N, Weppelmann TA, Jeong KC. Prevalence and Molecular Characteristics of Extended-Spectrum and AmpC β-Lactamase Producing Escherichia coli in Grazing Beef Cattle. Front Microbiol. 2020;10. Doi: 10.3389/fmicb.2019.03076. 29. Y ang F, Zhang S, Shang X, Wang X, Wang L, Yan Z, et al. Prevalence and characteristics of extended spectrum β-lactamase-producing Escherichia coli from bovine mastitis cases in China. J Integr Agric. 2018;17(6):1246–51. Doi: 10.1016/S2095-3119(17)61830-6. 30. Valentin L, Sharp H, Hille K, Seibt U, Fischer J, Pfeifer Y, et al. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs. Int J Med Microbiol. 2014;304(7):805–16. Doi: 10.1016/j.ijmm.2014.07.015. 31. Atlaw NA, Keelara S, Correa M, Foster D, Gebreyes W, Aidara-Kane A, et al. Identification of CTX-M Type ESBL E. coli from Sheep and Their Abattoir Environment Using Whole-Genome Sequencing. Pathog (Basel, Switzerland). 2021;10(11). Doi: 10.3390/pathogens10111480. 32. Mühlen S, Dersch P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol. 2020;10:169. Doi: 10.3389/fcimb.2020.00169. 33. Puño-Sarmiento J, Anderson EM, Park AJ, Khursigara CM, Barnett Foster DE. Potentiation of Antibiotics by a Novel Antimicrobial Peptide against Shiga Toxin Producing E. coli O157:H7. Sci Rep. 2020;10(1):10029. Doi: 10.1038/s41598-020-66571-z. 34. Sanjana M, Blankenship HM, Rodrigues JA, Mosci RE, Rudrik JT, Manning SD. Antibiotic Susceptibility Profiles and Frequency of Resistance Genes in Clinical Shiga Toxin-Producing Escherichia coli Isolates from Michigan over a 14-Year Period. Antimicrob Agents Chemother. 2021;65(11):e01189-21. Doi: 10.1128/AAC.01189-21. 35. Mir RA, Kudva IT. Antibiotic-resistant Shiga toxin-producing Escherichia coli: An overview of prevalence and intervention strategies. Zoonoses Public Health. 2019;66(1):1–13. Doi: 10.1111/zph.12533. 36. Bourély C, Cazeau G, Jarrige N, Jouy E, Haenni M, Lupo A, et al. Co-resistance to Amoxicillin and Tetracycline as an Indicator of Multidrug Resistance in Escherichia coli Isolates From Animals. Front Microbiol. 2019;10:2288. Doi: 10.3389/fmicb.2019.02288. 37. Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 2012;127(1):4–22. Doi: 10.1177/003335491212700103. 38. Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front Microbiol. 2021;12:610656. Doi: 10.3389/fmicb.2021.610656. 39. Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. Clinical Veterinary Microbiology. 2nd ed. Edinburgh: MOSBY ELSEVIER; 2013. ISBN: 9780723432371. 40. Lin Z, Kurazono H, Yamasaki S, Takeda Y. Detection of various variant verotoxin genes in Escherichia coli by polymerase chain reaction. Microbiol Immunol. 1993;37(7):543–8. Doi: 10.1111/j.1348-0421.1993.tb01675.x. 41. Askari Badouei M, Joseph Blackall P, Koochakzadeh A, Haghbin Nazarpak H, Sepehri MA. Prevalence and clonal distribution of avian Escherichia coli isolates harboring increased serum survival (iss) gene. J Appl Poult Res. 2016;25(1):67–73. Doi: 10.3382/japr/pfv064. 42. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. 2017. ISBN: 1-56238-805-3. 43. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490–5.Doi: 10.1093/jac/dkp498. 44. Monstein H-J, Ostholm-Balkhed A, Nilsson M V, Nilsson M, Dornbusch K, Nilsson LE. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS. 2007;115(12):1400–8.Doi: 10.1111/j.1600-0463.2007.00722.x. | ||
آمار تعداد مشاهده مقاله: 448 تعداد دریافت فایل اصل مقاله: 578 |