References
Akhbari, R.; Shakibai, A., & Nejati, M. (2019). Nighttime monitoring of economy: introducing a modern regional approach to regional planning. Quarterly Journals of Urban and Regional Development Planning, 3(7), 141-184. doi: 10.22054/urdp. (in Persian)
Bell, W. R., & Hillmer, S. C. (1984). Issues Involved With the Seasonal Adjustment of Economic Time Series. Journal of Business & Economic Statistics, 2(4), doi:10.1080/07350015.1984.10509398.
Beyer, R. C. M.; Chhabra, E.; Galdo, V., & Rama, M. G. (2018). Measuring districts' monthly economic activity from outer space,Policy Research working paper; no. WPS 8523. Washington, D.C.: World Bank Group.
Brendstrup, B.; Hylleberg, S.; Nielsen, M. R.; Skipper, L., & Stentoft, L. (2004). Seasonality In Economic Models. Macroeconomic Dynamics, 8(3), doi:10.1017/s1365100504030111.
Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. U.S.A. 108, 8589–8594
Chen, X., & Nordhaus, W. (2015). A Test of the New VIIRS Lights Data Set: Population and Economic Output in Africa. Remote Sens, 7, 4937-4947.
Chen, X., & Nordhaus, W. D. (2019). VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens., 11, 1057.
Farzanegan, M. R., & Hayo, B. (2018). Sanctions and the shadow economy: empirical evidence from Iranian provinces, Applied Economics Letters, DOI: 10.1080/13504851.2018.1486981
Farzanegan, M. R., & Fischer, S. (2021). Lifting of International Sanctions and the Shadow Economy in Iran—A View from Outer Space. Remote Sens., 13, 4620. https://doi.org/ 10.3390/rs13224620
Henderson, J.; Vernon, A. S., & David N. W. (2012). Measuring economic growth from outer space. American Economic Review, 102(2): 994-1028.
Mirhosseini, S.; Ebrahimzadeh, E.; Rafieian, M.; Modiri, M., & Ahadnejad Roshti, M. (2015). Monitoring the dynamics of urbanization in contemporary iran using multi-temporal images DMSP / OLS. Geographical Data, 24(96), 21-37. https://www.sid.ir/en/journal/ViewPaper.aspx?id=486389.(in Persian)
Nasr Esfahani, R.; Akbari, N., & Bidram, R. (2005). Determinants of Seasonal Output Gap in Iran. Iranian Journal of Economic Research, 7(22), 43-68. (in persian)
Rezaeei Rad, H., & Rafieyan, M. (2017). Estimating the spatial-temporal changes in intensity of the heat island in tehran metropolitan by using aster and landsat8 satellite images. Journal Of Regional Planning, 7(27),47-60. https://www.sid.ir/en/journal/ViewPaper.aspx?id=565421.(in persian)
Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L., & Wu, J. (2014). Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens., 6, 1705-1724. https://doi.org/10.3390/rs6021705
Skoufias, E.; Strobl, E., & Tveit, T. (2021). Can we rely on VIIRS nightlights to estimate the short-term impacts of natural hazards? Evidence from five South East Asian countries, Geomatics, Natural Hazards and Risk, 12:1, 381-404, DOI: 10.1080/19475705.2021.1879943
Sun, J.; Di, L.; Sun, Z.; Wang, J., & Wu, Y. (2020). Estimation of GDP Using Deep Learning With NPP-VIIRS Imagery and Land Cover Data at the County Level in CONUS, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1400-1415
Wang, X.; Rafa, M.; Moyer, J.D.; Li, J.; Scheer, J., & Sutton, P.(2019). Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery. Remote Sens., 11, 163. https://doi.org/10.3390/rs11020163
Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Wang, N., & Liu, Q.(2017). GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery. Remote Sens., 9, 673.
Zuleta, H, (2008). Seasons, Savings and GDP, Documentos de Trabajo, Facultad de Economía, Universidad del Rosario, No. 32