Abraham, B. L., & Murthy, H. N. N. (2017). Egg production curves and their prediction through mathematical models in a randombred broiler breeder control population. Indian Journal of Poultry Science, 52, 16–21.
- Adenaike, A. S., Akpan, U., Udoh, J. E., Wheto, M., Durosaro, S. O., Sanda, A. J., & Ikeobi, C. O. N. (2017). Comparative Evaluation of Growth Functions in three broiler strains of Nigerian chickens. Pertanika Journal of Tropical Agricultural Science, 40(4), 611-620.
- Aggrey, S. E. (2002). Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81, 1782–1788. https://doi.org/10.1093/ps/81.12.1782.
- Ahmadu, A., Kabir, M., Iyiola-Tunji, A. O., Akinsola, O. M., & Igbadun, H. (2017). Mathematical modelling of egg production curves of Shikabrown_ parents. Nigerian Journal of Animal Production, 44, 61–75. https://doi.org/10.51791/njap.v44i1.432.
- Akbas, Y., & Yaylak, E. (2000). Heritability estimating of growth curve parameters and genetic correlation between the growth curve parameters and weights at different age of Japanese quail. Archiv fur Geflugelkunde, 64(4), 141-146.
- Bindya, L. A., Murthy, H. N. N., Jayashankar, M. R., & Govindaiah, A. M. (2010). Mathematical models for egg production in an Indian colored broiler dam line. International Journal of Poultry Science, 9, 916–919. https://doi.org/10.3923/ijps.2010.916.919.
- Darmani Kuhi, H., & France, J. (2019). Modelling cumulative egg production in laying hens and parent stocks of broiler chickens using classical growth functions. British Poultry Science, 60(5), 564-569. https://doi.org/10.1080/00071668.2019.1622080.
- Darmani Kuhi, H., Kebreab, E., Lopez, S., & France, J. (2003). An evaluation of different growth functions for describing the profile of live weight with time (age) in meat and egg strains of chicken. Poultry Science, 82, 1536–1543. https://doi.org/10.1093/ps/82.10.1536.
- Cornell, J. A., & Berger, R. D. (1987). Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models. Phytopathology, 77(1), 63- 70.
- Emamgholi Begli, H., Zerehdaran, S., Hassani, S., Abbasi, M. A., & Khan Ahmadi, A. R. (2010). Heritability, genetic and phenotypic correlations of egg quality traits in Iranian native fowl. British Poultry Science, 51(6), 740- 744. http://dx.doi.org/10.1080/00071668.2010.528750.
- Fairfull, R. W., & Gowe, R. S. (1990). Genetics of egg production in chickens. Pages 705–759 in: Poultry Breeding and Genetics. R. D. Crawford, ed. Elsevier Science Publishers B.V., Amsterdam, the Netherlands.
- Faraji Arough, H., Rokouei, M., Maghsoudi, A., & Mehri, M. (2019). Evaluation of non-linear growth curves models for native slow-growing Khazak Chickens. Poultry Science Journal, 7(1), 25-32. https://doi.org/10.22069/psj.2019.15535.1355.
- Gavora, J. S., Liljedahl, L. E., McMillan, I., & Ahlen, K. (1982). Comparison of three mathematical models of egg production. British Poultry Science, 23(4), 339-348. https://doi.org/10.1080/00071688208447967.
- Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London, 115, 513- 583. https://doi.org/10.1098/rstl.1825.0026
- Groen, A. F., Jiang, X., Emmerson, D. A., & Vereijken, A. A. (1998). Deterministic model for the economic evaluation of broiler production systems. Poultry Science, 77, 925 –933. https://doi.org/10.1093/ps/77.7.925.
- Grossman, M., Gossman, T. N., & Koops, W.J. (2000). A model for persistency of egg production. Poultry Science, 79(12), 1715-1724. https://doi.org/10.1093/ps/79.12.1715.
- Haunshi, S., Suresh, D., Lawrence, L. L. P., Rajkumar, U., Kannaki, R., & Rudranath, C. (2022). Carcass characteristics, meat quality and nutritional composition of Kadaknath, a native chicken breed of India. Foods, 11(22), 3603. https://doi.org/10.3390/foods11223603.
- Lee, Y. P. (2006). Taiwan Country Chicken: A slow growth breed for eating quality. Symposium COA/INRA Scientific Cooperation in Agriculture. Taiwan, R.O.C.
- Lopez, S., France, J., Gerrits, W. J. J., Dhanoa, M. S., Humphries, D. J., & Dijkstra, J. (2000). A generalized Michaelis-Menten equation for the analysis of growth. Journal of Animal Science 78(7), 1816-1828. https://doi.org/10.2527/2000.7871816x.
- Lordelo, M., Cid, J., Cordovil, C. M., Alves, S. P., Bessa, R. J., & Carolino, I. (2020). A comparison between the quality of eggs from indigenous chicken breeds and that from commercial layers. Poultry Science, 99(3), 1768-1776. https://doi.org/10.1016/j.psj.2019.11.023
- Mahmoud, B. Y. F., Emam, A. M., & El-Full, E. A. (2021). Evaluation of four nonlinear models describing egg production curve of Fayoumi layers. Egyptian Poultry Science Journal, 41(1), 147-159. https://doi.org/10.15406/ijawb.2017.02.00012.
- Masoudi, A., & Azarfar, A. (2017). Comparison of nonlinear models describing growth curves of broiler chickens fed on different levels of corn bran. International Journal of Avian and Wildlife Biology, 2, 1-7. https://doi.org/10.15406/ijawb.2017.02.00012.
- Michalczuk, M., Damaziak, K., & Goryl, A. (2016). Sigmoid models for the growth curves in medium-growing meat type chickens, raised under semi-confined conditions. Annals of Animal Science, 16, 65-77. https://doi.org/10.1515/aoas-2015-0061.
- Miguel, J. A., Asenjo, B., Ciria, J., & Calvo, J. L. (2007). Growth and lay modelling in a population of Castellana Negra native Spanish hens. British Poultry Science, 48(6), 651-654. https://doi.org/10.1080/00071660701598414.
- Narinc, D., Karaman, E., Firat, M. Z., & Aksoy, T. (2010). Comparison of non-linear growth models to describe the growth in Japanese quail. Journal of Animal and Veterinary Advances, 9, 1961–1966. https://doi.org/10.3923/javaa.2010.1961.1966.
- Narinc, D., Karaman, E., Aksoy, T., & Firat, M. Z. (2013). Investigation of non-linear models to describe the long term egg production in Japanese quail. Poultry Science, 92, 1676-1682. https://doi.org/10.3382/ps.2012-02511.
- Narinc, D., Uckardes, F., & Aslan, E. (2014). Egg Production Curve Analysis in Poultry Science. World Poultry Science Journal, 70, 817–828. https://doi.org/10.1017/S0043933914000877.
- Otwinowska-Mindur, A., Gumułka, M., & Kania-Gierdziewicz, J. (2016). Mathematical models for egg production in broiler breeder hens. Annals of Animal Science, 16(4), 1185-1198. https://doi.org/10.1515/aoas-2016-0037.
- Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2014). R Core Team, nlme: linear and nonlinear mixed effects models. R package version 3.1-117. Available at http://CRAN.R-project.org/package=nlme.
- Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290-301. https://doi.org/10.1093/jxb/10.2.290
- Rizzi, C., Contiero, B., & Cassandro, M. (2013). Growth patterns of Italian local chicken populations. Poultry Science, 92, 2226-2235. https://doi.org/10.3382/ps.2012-02825.
- Robertson, T. B. (1908). On the normal rate of growth of an individual, and its biochemical significance. Archiv für Entwicklungsmechanik der Organismen, 25(4), 581-614.
- Roush, W. B., & Branton, S. L. (2005). A comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poultry Science, 84, 494-502. https://doi.org/10.1093/ps/84.3.494.
- Savegnago, R. P., Cruz, V. A., Ramos, S. B., Caetano, S. L., Schmidt, G. S., Ledur, M. C., El Faro, L., & Munari, D. P. (2012). Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens. Poultry Science, 91, 2977–2987. https://doi.org/10.3382/ps.2012-02277.
- Sharifi, M. A., Patil, C. S., Yadav, A. S., & Bangar, Y. C. (2022). Mathematical modeling for egg production and egg weight curves in a synthetic white leghorn. Poultry Science, 101(4), 101766. https://doi.org/10.1016/j.psj.2022.101766.
- Thornley, J. H. M., & France, J. (2007). Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences, 2nd ed. Oxon, UK, CABI Publishing, Wallingford.
- Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 293-297
- Wolc, A., Graczyk, M., Settar, P., Arango, J., O’sullivan, N. P., Szwaczkowski, T., & Dekkers, J. C. M. (2015). Modified Wilmink curve for egg production analysis in layers. In XXVII International Poultry Science Symposium PB WPSA “Science to practice-practice to science”, Bydgoszcz, Poland.
- Wolc, A., Arango, J., Settar, P., Neil, P., & Dekkers, J. (2011). Evaluation of egg production in layers using random regression models. Poultry Science, 90(1), 30-34. https://doi.org/10.3382/ps.2010-01118.
- Wood, P. D. P. (1967). Algebraic Model of the Lactation Curve in Cattle. Nature, 216, 164–165. https://doi.org/10.1038/216164a0.
- Yang, N., Wu, C., & McMillan, I. (1989). New mathematical model of poultry egg production. Poultry Science, 68, 476 – 481. https://doi.org/10.3382/ps.0680476.
|