- Berlutti, F., Pantanella, F., Natalizi, T., Frioni, A., Paesano, R., Polimeni, A., & Valenti, P. (2011). Antiviral properties of lactoferrin—a natural immunity molecule. Molecules, 16(8), 6992-7018. https://doi.org/10.3390/molecules16086992
- Blanchetot, C., De Jonge, N., Desmyter, A., Ongenae, N., Hofman, E., Klarenbeek, A., Sadi, A., Hultberg, A., Kretz-Rommel, A., & Spinelli, S. (2016). Structural mimicry of receptor interaction by antagonistic interleukin-6 (IL-6) antibodies. Journal of Biological Chemistry, 291(26), 13846-13854. https://doi.org/1074/jbc.M115.695528
- Bolscher, G., Adão, R., Nazmi, K., Van den Keybus, P. A., Van’t Hof, W., Amerongen, A. V. N., Bastos, M., & Veerman, E. C. (2009). Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie, 91(1), 123-132. https://doi.org/10.1016/j.biochi.2008.05.019
- Boswell, C. A., Tesar, D. B., Mukhyala, K., Theil, F. P., Fielder, P. J., & Khawli, L. A. (2010). Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjugate Chemistry, 21(12), 2153-2163. https://doi.org/10.1021/bc100261d
- Chen, Y. Q., Sengchanthalangsy, L. L., Hackett, A., & Ghosh, G. (2000). NF-κB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets. Structure, 8(4), 419-428. https://doi.org/10.1016/S0969-2126(00)00123-4
- Daneshmand, A., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., & Ahmadian, M. (2019). Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with coli. Scientific Reports, 9(1), 1-9. https://doi.org/10.1038/s41598-019-50511-7
- Daneshmand, A., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A., Ahmadian, M., Alizadeh, M., & Aldawoodi, A. (2020). Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteritis. Scientific Reports, 10(1), 11-1. https://doi.org/10.1038/s41598-020-74754-x
- Dinarello, C. A. (2007). Historical insights into cytokines. European Journal of Immunology. European Journal of Immunology, 37(1), 34-45. https://doi.org/10.1002/eji.200737772
- Embleton, N. D., Berrington, J. E., McGuire, W., Stewart, C. J., & Cummings, S. P. (2013). Lactoferrin: Antimicrobial activity and therapeutic potential. Seminars in Fetal and Neonatal Medicine. Seminars in Fetal and Neonatal Medicine, 18(3), 143-149. https://doi.org/10.1016/j.siny.2013.02.001
- Florio, T. J., Lokareddy, R. K., Yeggoni, D. P., Sankhala, R. S., Ott, C. A., Gillilan, R. E., & Cingolani, G. (2022). Differential recognition of canonical NF-κB dimers by Importin α3. Nature Communications, 13(1), 1-16. https://doi.org/10.1038/s41467-022-28846-z
- Hayden, M., West, A., & Ghosh, S. (2006). NF-κB and the immune response. Oncogene, 25(51), 6758-6780. https://doi.org/10.1038/sj.onc.1209943
- Hu, S., Liang, S., Guo, H., Zhang, D., Li, H., Wang, X., Yang, W., Qian, W., Hou, S., & Wang, H. (2013). Comparison of the inhibition mechanisms of adalimumab and infliximab in treating tumor necrosis factor α-associated diseases from a molecular view. Journal of Biological Chemistry, 288(38), 27059-27067. https://doi.org/1074/jbc.M113.491530
- Kanwar, J. R., Roy, K., Patel, Y., Zhou, S.F., Singh, M. R., Singh, D., Nasir, M., Sehgal, R., Sehgal, A., & Singh, R. S. (2015). Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules, 20(6), 9703-9731. https://doi.org/10.3390/molecules20069703
- Kopp, E., & Ghosh, S. (1994). Inhibition of NF-κB by sodium salicylate and aspirin. Science, 265(5174), 956-959. https://doi.org/10.1126/science.8052854
- Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking?. Proteins: Structure, Function, and Bioinformatics, 81(12), 2166-2159. https://doi.org/10.1002/prot.24403
- Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255-278. https://doi.org/10.1038/nprot.2016.169
- Kraus, T., Winter, G., & Engert, J. (2019). Test models for the evaluation of immunogenicity of protein aggregates. International Journal of Pharmaceutics, 559(1), 192-200. https://doi.org/10.1016/j.ijpharm.2019.01.015
- Leboffe, L., Giansanti, F., & Antonini, G. (2009). Antifungal and antiparasitic activities of lactoferrin. Anti-Infective Agents in Medicinal Chemistry .Formerly Current Medicinal Chemistry-Anti-Infective Agents, 8(2), 114-127. https://doi.org/2174/187152109787846105
- Liang, S., Dai, J., Hou, S., Su, L., Zhang, D., Guo, H., Hu, S., Wang, H., Rao, Z., & Guo, Y. (2013). Structural basis for treating tumor necrosis factor α (TNFα)-associated diseases with the therapeutic antibody infliximab. Journal of Biological Chemistry, 288(19), 13799-13807. https://doi.org/10.1074/jbc.M112.433961
- Nemati, M., Akseh, S., Amiri, M., Nejabati, H. R., Jodati, A., Maroufi, N. F., Faridvand, Y., & Nouri, M. (2021). Lactoferrin suppresses LPS-induced expression of HMGB1, microRNA 155, 146, and TLR4/MyD88/NF-кB pathway in RAW264. 7 cells. Immunopharmacology and Immunotoxicology, 43(2), 153-159. https://doi.org/10.1080/08923973.2021.1872616
- Rushe, M., Silvian, L., Bixler, S., Chen, L. L., Cheung, A., Bowes, S., Cuervo, H., Berkowitz, S., Zheng, T., & Guckian, K. (2008). Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure, 16(5), 798-808. https://doi.org/10.1016/j.str.2008.02.012
- Song, L., Xie, W., Liu, Z., Guo, D., Zhao, D., Qiao, X., Wang, L., Zhou, H., Cui, W., & Jiang, Y. (2019). Oral delivery of a Lactococcus lactis strain secreting bovine lactoferricin–lactoferrampin alleviates the development of acute colitis in mice. Applied Microbiology and Biotechnology, 103(15), 6169-6186. https://doi.org/10.1007/s00253-019-09898-6
- Srinivasan, M., Blackburn, C., & Lahiri, D. K. (2014). Functional characterization of a competitive peptide antagonist of p65 in human macrophage-like cells suggests therapeutic potential for chronic inflammation. Drug Design, Development and Therapy, 8(1), 2409-2419. https://doi.org/10.2147/DDDT.S59722
- Tang, X. S., Shao, H., Li, T. J., Tang, Z. R., Huang, R. L., Wang, S. P., Kong, X. F., Wu, X., & Yin, Y. L. (2012). Dietary supplementation with bovine lactoferrampin–lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets. Applied Biochemistry and Biotechnology, 168(4), 887-898. https://doi.org/10.1007/s12010-012-9827-0
- Tanhaeian, A., Ahmadi, F. S., Sekhavati, M. H., & Mamarabadi, M. (2018). Expression and purification of the main component contained in camel milk and its antimicrobial activities against bacterial plant pathogens. Probiotics and Antimicrobial Proteins, 10(4), 787-793. https://doi.org/10.1007/s12602-018-9416-9
|