- Abbawi, Z.W.S. (2015). Studying strength and stiffness characteristics of sand stabilized with cement and limeEngineering and Technology Journal, 33(8), 1857–1875.
- Ahmadi, A., Neyshabouri, M.R., Rouhipour H., & Asadi, H. (2011). Fractal dimension of soil a ggregates as an index of soil erodibility. Journal of Hydrology, 400, 305-311. https://doi.org/10.1016/j.jhydrol.2011.01.045
- Ahmed, A., Gariepy, Y., & Raghavan, V. (2017). Influence of wood-derived biochar on the compactibility and strength of silt loam soil. International Agrophysics, 31, 149-155. https://doi.org/10.1515/intag-2016-0044
- AL Rasslany, I.A., & AL, Z. (2014). Effects of poly vinyl alcohol/starch as Soil conditioners on the physical properties of loamy sand and loam soils following different wetting and drying cycles. Journal of Natural Sciences Research, 4(24), 36-41.
- Alipour, A., Tavili, A., Sangoony, H., & Alipouri, E. (2018). Operational, environmental and economic feasibility of using steel slag as mulch for controlling wind erosion. Desert Ecosystem Engineering Journal, 7(18), 15-26. (In Persian with English abstract)
- Amiri Khaboushan, E., Emami, H., Mosaddeghi, M.R., & Astaraei, A.R. (2018). Estimation of unsaturated shear strength parameters using easily-available soil properties. Soil and Tillage Research, 184, 118-127. https://doi.org/10.1016/j.still.2018.07.006
- Arzaghi, F., Farrokhian Firouzi, A., Enayatizamir, N., & Khalilimoghaddam, B. (2017). Effect of Polyacrylamide Polymer on Wind Erosion Control of Sandy Soil in Azadegan Plain. Journal of Water and Soil, 31(4), 1070-1082. (In Persian with English abstract)
- Arzaghi, F., Farrokhian, Firouzi. A., Enayatizamir, N., & Khalilimoghadam, B. (2015). Consideration the effect of Thrichoderma harzianum on windy erosion control of Azadegan plain sandy soil at laboratory and wind tunnel. Soil Management and Sustainable Production, 5(2), 239-251. (In Persian with English abstract)
- Ataee, A., Gorji, M., & Parvizi, Y. (2014). Investigating the capability of fractal dimension of aggregates in evaluating different soil managements. Iranian Journal of Soil Research (Soil and Water Sciences), 28(4), 701-712. (In Persian)
- Ayeldeen, M., Negm, A., El Sawwaf, M. & Gädda, T. (2016). Laboratory study of using biopolymer to reduce wind erosion. International Journal of Geotechnical Engineering, 12(3), 228-240. https://doi.org/10.1080/19386362.2016.1264692
- Bahari, M. & Shahnazari, A. (2015). Experimental study of the fine-grained earthen bed stabilization using nanoclay. Journal of Water and Soil Sciences, 19(72), 107-114. (In Persian)
- Barthes, B., & Roose, E. (2002). Aggregate stability as an indicator of soil susceptibility to runoff and erosion: Validation at several levels. Catena, 47, 133-149. https://doi.org/10.1016/S0341-8162(01)00180-1
- Bravo-Garza, M.R., Bryan, B., & P. Voroney. (2009). Influence of wetting and drying cycles and maize residue addition on the formation of water stable aggregates in Vertisols. Geoderma, 151, 150-156. https://doi.org/10.1016/j.geoderma.2009.03.022
- Burrell, L., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96-102. https://doi.org/10.1016/j.geoderma.2016.07.019
- Cantón, Y., Solé-Benet, A., Asensio, C., Chamizo S., & Puigdefábregas, J. (2009). Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena 77: 192-199. https://doi.org/10.1016/j.catena.2008.12.011
- Cao, Y., Wang, B., Guo, H., Xiao, H. & Wei, T. (2017). The effect of super absorbent polymers on soil and water conservation on the terraces of the loess plateau. Ecological Engineering, 102, 270–279. https://doi.org/10.1016/j.ecoleng.2017.02.043
- Chang, I., Im, J., & Cho, G. C. (2016). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(3), 1-23. https://doi.org/10.3390/su8030251
- Chu, G., Zhao, J., Huang, Y., Zhou, D., Liu, Y., Wu, M., Peng, H., Zhao, Q., Pan, B., E.W., & Steinberg, C. (2018). Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environmental Pollution, 240, 1-9. https://doi.org/10.1016/j.envpol.2018.04.003
- Cosentino, D., Chenu, C., & Le Bissonnais, Y. (2006). Aggregate stability and microbial community dynamics under drying–wetting cycles in a silt loam soil. Soil Biology and Biochemistry, 38, 2053-2062. https://doi.org/10.1016/j.soilbio.2005.12.022
- Das, K.C., Steiner, C., Ahmedna, M., Rehrah, D., & Schomberg, H. (2012). Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Science, 177(5), 310–320. http://doi.org/10.1097/SS.0b013e31824e5593
- Denison, M.R., & Hookham, P.A. (1996). Modeling of dust entrainment by high- speed airflow. The American Institute of Aeronautics and Astronautics Journal, 34, 1392-1402. https://doi.org/10.2514/3.13245
- Ding, Q., & Ding, W. (2007). Comparing stress wavelets with fragment fractals for soil structure quantification. Soil and Tillage Research, 93, 316–323. https://doi.org/10.1016/j.still.2006.05.006
- Ekhtesasi, M.R., & Hazirei, F. (2016). Investigation of cement mulch on stabilization of windblown.Journal of Range and Watershed Management, 68(4), 739-750. (In Persian with English abstract)
- Falsone, G., Bonifacio, E., & Zanini, E. (2012). Structure development in aggregates of poorly developed soils through the analysis of the pore system. Catena, 95, 169-176. https://doi.org/10.1016/j.catena.2012.02.014
- Fletcher, A.J., Smith, M.A., Heinemeyer, A., Lord, R., Ennis, C.J., Hodgson, E.M., & Farrar, K. (2014). Production factors controlling the physical characteristics of biochar derived from phytoremediation willow for agricultural applications. Bioenergy Ressearch, 7, 371–380. https://doi.org/10.1007/s12155-013-9380-x
- Gong, W., Zang, , Liu, B., Chen, H., Wu, F., Huang, R., & Wang, Sh. (2016). Effect of using polymeric materials in ecological sand-fixing of Kerqin Sandy Land of China. Journal of Applied Polymer Science, 133(43), 1-7. https://doi.org/10.1002/app.44102
- Grossman, J., Neves, E.G., & Luizão, F.J. (2010). Black carbon affects the cycling of nonblack carbon in soil. Organic Geochemistry, 41(2), 206–213. https://doi.org/10.1016/j.orggeochem.2009.09.007
- Hong, C., Chenchen, L., Xueyong, Z., Huiru, L., Liqiang, K., Bo, L., & Jifeng, L. (2020). Wind erosion rate for vegetated soil cover: A prediction model based on surface shear strength. Catena, 187, 104398. https://doi.org/10.1016/j.catena.2019.104398
- Huang, G., & Zhang, R. (2005). Evaluation of soil water retention curve with the pore-solid fractal model. Geoderma, 127(1-2), 52-61. https://doi.org/10.1016/j.geoderma.2004.11.016
- Hueso-González, P., Martínez-Murillo, J.F., & Ruiz-Sinoga, J.D. (2016). Effects of topsoil treatments on a orestation in a dry Mediterranean climate (southern Spain). Solid Earth, 7, 1479–1489.
- Jamshidsafa, M., Khalili Moghadam, B., Jafari, S., & Ghorbani, SH. (2015). Feasibility investigation of FilterCake using in mulch production for sand dune stabilization in Ahvaz. Journal of Agricultural Engineering, 38(1), 29-42. (In Persian with English abstract)
- Jien, Sh.H., & Wang, C.Sh. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233. https://doi.org/10.1016/j.catena.2013.06.021
- Jingkuan, S., Fei, L., Zhongqi, L., Lingyan, Zh., & Zhengguo, S. (2014). Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicology and Environmental Safety, 106, 226-231. https://doi.org/10.1016/j.ecoenv.2014.04.042
- Johannes, C., & Verbeek, R. (2012). Production and applications of Biopolymers, InTech.
- Kadokawa, J., Murakami, M., & Kaneko, Y. (2008). A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydrate Research, 343(4), 769-772. https://doi.org/10.1016/j.carres.2008.01.017
- Kadokawa, J., Murakami, M., Takegawa, A., & Kaneko, Y. (2009). Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydrate Polymers, 75(1), 180-183. https://doi.org/10.1016/j.carbpol.2008.07.021
- Kalkan, E. (2009). Effects of silica fume on the geotechnical properties of fine- grained soils exposed to freeze and thaw. Cold Regions Science and Technology, 5, 130-135. https://doi.org/10.1016/j.coldregions.2009.03.011
- Kemper, W.D., & Rosenau, R.C. (1986). Aggregate stability and size distribution. (pp: 425-442). In: Klute A, (Ed.), Methods of Soil Analysis. ASA and SSSA, Madison, WI.
- Khosravi, A., & Moosavi, A.A. (2017). Influence of organic acids and wetting-drying cycles on the aggregate stability and size distribution in a calcareous soil. Journal of Soil Research (Soil and Water Sciences), 31(2), 263-277. (In Persian with English abstract)
- Li, L., Lin, Z., Yang, X., Wan, Z., & Cui, S. (2009). A novel cellulose hydrogel prepared from its ionic liquid solution. Chinese Science Bulletin, 54(9), 1622-1625. https://doi.org/10.1007/s11434-009-0207-2
- Liang, B., Lehmann, J., Sohi, S.P., Thies, J.E., O'Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, , & Kanungo, D.P. (2018). Evaluation of Strength Properties of Sand Modified with Organic Polymers. Journal Polymers, 10(5), 499-514. https://doi.org/10.3390/polym10030287
- Ma, R., Cai, C.Z.L., Wang, J., Xiao, T., Peng, G., & Yang, W. (2015). Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based x-ray micro-computed tomography. Soil and Tillage Research, 149, 1-11. https://doi.org/10.1016/j.still.2014.12.016
- Majdi, H., Karimian- Eghbal, M., Karimzadeh, H.R., & Jalalian, A. (2006). Effect of Different Clay Mulches on the Amount of Wind Eroded Materials. Journal of Crop Production and Processing, 10(3), 137-149. (In Persian)
- Mandal, A., & Singh, N. (2017). Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems. International Journal of Hygiene and Environmental Health, 220(3), 637-645. https://doi.org/10.1016/j.ijheh.2017.02.010
- Mehrabi, sh., Soltani, S., & Jafari, R. (2015). Investigation of the relationship between climate parameters and dust phenomenon (Case study: Khuzestan province). Journal of Sciences and Technology of Agriculture and Natural Resources, Hydrology and Soil Science, 19(71), 69-80. (In Persian with English abstract)
- Memarzadeh, M., Emami, H., & Karimi, A.R. (2019). Evaluation the efficiency of mechanical and biological management practices on wind erosion in in Tal Hamid rail way Station of Tabas. Journal of Soil Management and Sustainable Production, 9(3), 113-131. (In Persian with English abstract). http://doi.org/22069/ ejsms.2020.15601.1836
- Miri, A., Dragovich, D., & Dong, Z. (2017). Vegetation morphologic and aerodynamiccharacteristics reduce aeolian erosion. Scientific Reports. 7(1): 12831 48. Miri, A., Dragovich, D. & Dong, Z. (2019). Wind-borne sand mass flux in vegetated surfaces–Wind tunnel experiments with live plants. Catena, 172, 421-434. https://doi.org/ 10.1016/j.catena.2018.09.006
- Mizuta, K., Taguchi, S., & Sato, Sh. (2015). Soil aggregate formation and stability induced by starch and cellulose. Soil Biology and Biochemistry, 87, 90-96. https://doi.org/10.1016/j.soilbio.2015.04.011
- Movahedan, M., Abbasi, N., & Keramati Toroghi, M. (2013). Experimental investigation of Polyvinyl Acetat effect on wind erosion of different soils by impacting sand particles. Journal of Water and Soil Conservation, 20(1), 55-75. (In Persian with English abstract)
- Murphy, B.W. (2015). Impact of soil organic matter on soil properties-a review with emphasis on Australian soils. Soil Research, 53(6), 605–635. https://doi.org/10.1071/SR14246
- Naghizade Asl, F., Asgari, H. R., Emami, H., & Jafari, M. (2017). Stabilization of drifting sands using micro silica- lime- clay as a mulch. Arabian Journal of Geoscience, 10(536), 1-7. https://doi.org/10.1007/s12517-017-3318-0
- Naghizade Asl, F., Asgari, H.R., Emami, H., & Jafari, M. (2018). Effect of micro silica (Silica fume) as mulch on soil losses of sand dunes. Journal of Soil Management and Sustainable Production, 8(3), 139-145. http://doi.org/22069/ejsms.2018.13963.1771
- Nooralivand, , & Farrokhian Firouzi, A. (2020). Investigation of modified biochar, nanoclay and polyvinyl acetate on soil stabilization and wind erosion control of sandy and loamy sand soils. 51(4), 923-935. (In Persian with English abstract)
- Oades, J.M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil, 76, 319-337.
- Olawale, O.J., Abu, S.T., & Dorcas, O.O. (2016). Evaluation of soil aggregate stability under long term land management system. International Journal of Plant and Soil Science, 9(2), 1-7. http://doi.org/10.9734/IJPSS/2016/19691
- Padidar, M., Jalalian, A., Asgari, K., Abdouss, M., Najafi, P., Honarjoo, N., & Fallahzade, J. (2017). The impacts of nanoclay on sandy soil stability and atmospheric dust control. Agriculturae Conspectus Scientificus, 81(4), 193-196.
- Paluszek, J. (2011). Physical quality of eroded soil amended with gel-forming polymer. International Agrophysics, 25, 375–382.
- Peng, H.B., Gao, P., Chu, G., Pan, B., Peng, J.H., & Xing, B.S. (2017). Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environment Pollution, 229, 846-853. https://doi.org/10.1016/j.envpol.2017.07.004
- Pires, L.F., Bacchi, O.O.S., & Reichardt, K. (2007). Assessment of soil structure repair due to wetting and drying cycles through 2D tomographic image analysis. Soil and Tillage Research, 94, 537–545. https://doi.org/10.1016/j.still.2006.10.008
- Pirmoradian, N., Sepaskhah, A.R., & Hajabbasi, M.A. (2005). Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystem Engineering, 90(2), 227-234. https://doi.org/10.1016/j.biosystemseng.2004.11.002
- Rajabi Agereh, S., Kiani, F., Khavazi, K., Rouhipour, H., & Khormali, F. (2019). Evaluation of the efficiency of biological reformer in controlling wind erosion. Iranian Journal of Range and Desert Research, 26(4), 824-837. (In Persian with English abstract)
- Rajaram, G., & Erbach, D.C. (1999). Effect of wetting -drying on soil physical properties. Journal of Terramechanics, 36, 39-49.
- Refahi, H. (2009). Wind Erosion and its Control. 5th University of Tehran prees, 320 p. (In Persian)
- Safadoust, A., Mahboubi, A.A., Mosaddeghi, M.R., Gharabaghi, B., Voroney, P., Unc, A., & Khodakaramian, G.h. (2012). Significance of physical weathering of twotexturally different soils for the saturated transport of coli and bromide. Journal of Environmental Management, 107, 147–158. https://doi.org/10.1016/j.jenvman.2012.04.007
- Shahabinejad, N., Mahmoodabadi, M., Jalalian, A., & Chavoshi, E. (2020). The influence of soil properties on the wind erosion rate at different regions of kerman province. Journal of Water and Soil Science, 24(9), 209-222. (in Persian with English abstract)
- Spaccini, R., Piccolo, A., Mbagwu, J.S.C., Zena Teshale, A., & Igwe, C.A. (2002). Influence ofthe addition of organic residues on carbohydrate content and structural stability of some highland soils in Ethiopia. Soil Use and Management, 18, 404–411. https://doi.org/10.1111/j.1475-2743.2002.tb00259.x
- Sun, J.X., Sun, X.F., Zhao, H., & Sun, R.C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331–339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008
- Tejedor, M., Jimenez, C., & Diaz, F. (2003). Volcanic materials as mulches for water conservation. Geoderma, 117, 283–295. https://doi.org/10.1016/S0016-7061(03)00129-0
- Utomo, W.H., & Dexter, A.R. (1982). Changes in soil aggregate water stability induced by wetting and drying cycles in non-saturated soil. Journal of Soil Science, 33, 623-637. https://doi.org/10.1111/j.1365-2389.1982.tb01794.x
- Vaezi, A. (2011). Application of Petroleum mulches in controlling wind erosion and stabilization of Windblown. 2th Conference National Wind Erosion and Dust Storms, 16-17 Feb, Yazd University, Yazd, Iran. (In Persian with English abstract)
- Verheijen, F., Jeffery, S., Bastos, A. C., van der Velde, M., & Diafas, I. (2010). Biochar application to soils a critical scientific review of effects on soil properties processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities. Luxembourg, 149 pp.
- Vidal, V.E., Vivas Miranda, J.G., & Paz Gonzalez, A. (2005). Characterizing anisotropy and heterogeneity of soil surface microtopography usingfractal models. Ecology Modeling, 182, 337-353. https://doi.org/10.1016/j.ecolmodel.2004.04.012
- Walkly, A., & Black, I.A. (1934). An examination of digestion methods for determining soil organic matter and a proposed modification of the chromic and titration. Soil Science Society of America Journal, 37, 29-38.
- Wang, B., Zheng, F.L., Römkens, M.J., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1-10. https://doi.org/10.1016/j.geomorph.2013.01.018
- Xu, J., Tang, Y., & Zhou, J. (2017). Effect of drying–wetting cycles on aggregate breakdown for yellow–brown earths in karst areas. Geoenvironmental Disasters, 4, 1–13.
- Yang, Y. & Liu, X. (2006). Effect of different mulch materials on winter wheat production in desalinized soil in Heilongjiang region of North China. Soil Tillage and Research, 38, 231–243. http://doi.org/10.1631/jzus.2006.B0858
- Zimbone, S.M., Vickers, A., Morgan, R.P.C., & Vella, P. (1996). Field investigation of different techniques for measuring surface soil shear strength. Soil Technology, 9, 101-111. https://doi.org/10.1016/0933-3630(96)00002-5
- Zong, Y., Chen, D., & Lu, S. (2014). Impact of biochar on swell-shrinkage behavior, mechanical strength and surface cracking of clayey soil. Journal of Plant Nutrition and Soil Science, 177(6), 920-926. https://doi.org/10.1002/jpln.201300596
|