- Abd El-Aziz, S.H., Gameh, M.A., & Ghallab, A. (2018). Applications of geographic information systems in studying changes in groundwater quality and soil salinity in Sohag Governorate. Eurasian Journal of Soil Science, 7(3), 213-223. https://doi.org/10.18393/ejss.416675.
- Abd-Elmabod, S.K., Fitch, A.C., Zhang, Z., Ali, R.R., & Jones, L. (2019). Rapid urbanisation threatens fertile agricultural land and soil carbon in the Nile delta. Journal of Environmental Management,252, 109668. https://doi.org/10.1016/j.jenvman.2019.109668
- Ardakani, M.A., & Vahdati, A.R. (2018). Monitoring of organic matter and soil salinity by using IRS-LissIII satellite data in the Harat plain, of Yazd province. Desert23(1): 1-8
- Avliyakulov, M.A., Kumari, M., Rajabov, N.Q., & Durdiev, N.K. (2020). Characterization of soil salinity and its impact on wheat crop using space-borne hyperspectral data. Geoinformation Support of Sustainable Development of Territories,26(Part 3), 271-285.
- Batista, F. (2020). Geostatistical analysis of soil properties of the karstic sub-horizontal plain of the Yucatan Peninsula. Tropical and Subtropical Agroecosystems, 24, 09.
- Boehner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., & Selige, T. (2002): Soil regionalisation by means of Terrain analysis and process parameterisation. In: Micheli, E., Nachtergaele, F., Montanarella, L. [Ed.]: Soil Classification 2001. European Soil Bureau, Research Report No. 7, EUR 20398 EN, Luxembourg. pp.213-222.
- Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Association for Computing Machinery, pp. 144–152.
- Breiman, L. (2001). Random forests: Machine Learning 45(1): 5-32. https://doi.org/10.1023/A:1010933404324.
- Corwin, D.L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science,72(2), 842-862. https://doi.org/10.1111/ejss.13010
- de Anta, R.C., Luís, E., Febrero-Bande, M., Galiñanes, J., Macías, F., Ortíz, R., & Casás, F. (2020). Soil organic carbon in peninsular Spain: influence of environmental factors and spatial distribution. Geoderma,370, 114365.
- Esfandiarpour-Boroujeni, I., Shahini-Shamsabadi, M., Shirani, H., Mosleh, Z., Bagheri-Bodaghabadi, M., & Salehi, M.H. (2020). Assessment of different digital soil mapping methods for prediction of soil classes in the Shahrekord plain, Central Iran. Catena,193, 104648
- FAO and ITPS. (2015). Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture 439 Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.
- Fathizad, H., Ali Hakimzadeh Ardakani, M., Sodaiezadeh, H., Kerry, R., & Taghizadeh Mehrjardi, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma, 365, 114233.
- Fu, T., Gao, H., & Liu, J. (2021). Comparison of different interpolation methods for prediction of soil salinity in arid irrigation region in northern China. Agronomy 11(8): 1535. https://doi.org/10.3390/agronomy11081535
- Gholizadeh, A., Žižala, D., Saberioon, M., & Borůvka, L. (2018). Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment218: 89-103. https://doi.org/10.1016/j.rse.2018.09.015
- Gomes, L.C., Faria, R. M., de Souza, E., Veloso, G.V., Schaefer, C.E.G., & Fernandes Filho, E.I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma,340, 337-350. https://doi.org/10.1016/j.geoderma.2019.01.007.
- .Halima, O.I., Azzouzi, M.E., Douaik, A., Azim, K., & Zouahri, A. (2019). Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune–Marrakech (Morocco). Soil and Tillage Research,193, 153-160. https://doi.org/10.1016/j.still.2019.06.003.
- Hamzehpour, N., Shafizadeh-Moghadam, H., & Valavi, R. (2019). Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture. Catena,182, 104141. https://doi.org/10.1016/j.catena.2019.104141
- Hassani, A., Azapagic, A., & Shokri, N. (2020). Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences,117(52), 33017-33027. https://doi.org/10.1073/pnas.2013771117
- 17-Hengl, T., Heuvelink, G.B.M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120, 75–93. https://doi.org/10.1016/j.geoderma.2003.08.018
- Heung, B., Ho, H.C., Zhang, J., Knudby, A., Bulmer, C.E., Schmidt, M.G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma265: 62-77. https://doi.org/10.1016/j.geoderma.2015.11.014
- Holmquist, J. R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J.T., Megonigal, J. P., & Woodrey, M. (2018). Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports, 8(1), 1-16. https://doi.org/10.1038/s41598-018-26948-7
- Jackson, M.L. (1967). Soil Chemical Analysis–Prentice Hall Inc. Englewood Cliffs, NJ, USA.
- Khamoshi, S. E., Sarmadian, F., & Keshavarzi, A. (2018). Digital soil mapping using random forests model in Abyek, Qazvin province. Iranian Journal of Soil Research, 32(3).
- Khaledian, Y., & Miller, B.A. (2020). Selecting appropriate machine learning methods fordigital soil mapping. Appl. Math Model 81: 401–418. https://doi.org/10.1016/j.apm.2019.12.016.
- Khazaie, E., Bostani, A. A., & Davatgar, N. (2017). Geostatic and GIS evaluation of spatial variability of nitrogen, phosphorus, potassium, and cation exchange capacity in agro-industrial land of Sharif Abad in Qazvin. Iranian Journal of Soil Research, 31(2), 195-213. http://doi.org/10.22092/ijsr.2017.11310.
- Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma,352, 395-413. https://doi.org/10.1016/j.geoderma.2019.05.031
- Ma, G., Ding, J., Han, L., Zhang, Z., & Ran, S. (2021). Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Regional Sustainability,2(2), 177-188. https://doi.org/10.1016/j.regsus.2021.06.001
- Mahmoudzadeh, H., Matinfar, H. R., Taghizadeh-Mehrjardi, R., & Kerry, R. (2020). Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional,21, e00260. https://doi.org/10.1016/j.geodrs.2020.e00260
- Mashalaba, L., Galleguillos, M., Seguel, O., & Olivares, J. (2020). Predicting spatial variability of selected soil properties using digital soil mapping in a rainfed vineyard of central Chile. Geoderma Regional, 22, e00289 https://doi.org/10.1016/j.geodrs.2020.e00289
- McBratney, A., Santos, M.M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4
- Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2021). Digital modeling of three-dimensional soil salinity variation using machine learning algorithms in arid and semi-arid lands of Qazvin plain. Iranian Journal of Soil and Water Research,52(7), 1915-1929. (In Persian with English abstract)
- Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement,201, 111706. (In Persian with English abstract)
- Nabiollahi, K., Eskandari, S., Taghizadeh-Mehrjardi, R., Kerry, R., & Triantafilis, J. (2019). Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Management,10(1), 63-77. https://doi.org/10.1016/j.measurement.2022.111706
- Nawar, S., & Mouazen, A.M. (2017). Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon. Sensors,17(10), 2428. https://doi.org/10.3390/s17102428
- Osmani, M., Osmani, F., & Pourhoseingholi, M.A. (2019). Comparison of decision tree and logistic regression for prediction of functional dyspepsia and gastroesophageal reflux disease in tehran province using rome iii. Modern Care Journal,16(4).
- Rahmani, A., Sarmadian, F., & Arefi, H. (2022). Digital mapping of top-soil thickness and associated uncertainty using machine learning approach in some part of arid and semi-arid lands of Qazvin Plain. Iranian Journal of Soil and Water Research,53(3), 585-602. (In Persian with English abstract)
- Rhoades, J.D. (1982). Cation exchangeable capacity. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis: Part2. Chemical and Microbiological Properties. Agronomy Monograph, 9, 149–157.
- Rossel, R.A.V. & McBratney, A.B. (2009). Diffuse reflectance spectroscopy as a tool for digital soil mapping. In: Digital soil mapping with limited data.
- Shabani, S., Samadianfard, S., Sattari, M. T., Mosavi, A., Shamshirband, S., Kmet, T., & Várkonyi-Kóczy, A.R. (2020). Modeling pan evaporation using Gaussian process regression K-nearest neighbors’ random forest and support vector machines; comparative analysis. Atmosphere,11(1), 66. https://doi.org/10.3390/atmos11010066
- Swileam, G.S., Shahin, R.R., Nasr, H.M., & Essa, K.S. (2019). Assessment of soil variability using electrical resistivity technique for normal alluvial soils, Egypt. Plant Archives,19(1), 905-912.
- Taati, A., Sarmadian, F., Motaghian, H., & Mousavi, S.R. (2020). Mapping Features of Surface and Depth, Soil Profiles by Using Geostatistical Techniques in Part of Qazvin Plain. Human & Environment,18(1), 67-81.
- Taghadosi, M.M., Hasanlou, M., & Eftekhari, K. (2019). Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery. International Journal of Remote Sensing,40(1), 237-252. https://doi.org/10.1080/01431161.2018.1512767
- Taghizadeh-Mehrjardi, R., Schmidt, K., Toomanian, N., Heung, B., Behrens, T., Mosavi, A., & Scholten, T. (2021). Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma,383, https://doi.org/10.1016/j.geoderma.2020.114793
- Tripathi, A., & Tiwari, R.K. (2021). A simplified subsurface soil salinity estimation using synergy of SENTINEL‐1 SAR and SENTINEL‐2 multispectral satellite data, for early stages of wheat crop growth in Rupnagar, Punjab, India. Land Degradation & Development,32(14), 3905-3919. https://doi.org/10.1002/ldr.4009
- Wallach, D., Makowski, D., Jones, J.W., & Brun, F. (2006). Working with dynamic crop models: evaluation, analysis, parameterization, and applications. Elsevier.
- Wang, J., Peng, J., Li, H., Yin, C., Liu, W., Wang, T., & Zhang, H. (2021). Soil salinity mapping using machine learning algorithms with the sentinel-2 MSI in Arid Areas, China. Remote Sensing,13(2), 305. https://doi.org/10.3390/rs13020305
- Wilding, L.P. (1985). Spatial variability: its documentation, accommodation, and implication to soil surveys. In: Soil Spatial Variability, Las Vegas NV, pp. 166–194.
- Wu, W., Zucca, C., Muhaimeed, A. S., Al‐Shafie, W. M., Fadhil Al‐Quraishi, A. M., Nangia, V., & Liu, G. (2018). Soil salinity prediction and mapping by machine learning regression in C entral M esopotamia, I raq. Land Degradation & Development,29(11), 4005-4014. https://doi.org/10.1002/ldr.3148
- Zhang, H., Wu, P., Yin, A., Yang, X., Zhang, M., & Gao, C. (2017). Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment,592, 704-713. https://doi.org/10.1016/j.scitotenv.2017.02.146
- Zhao, C., Zhang, H., Song, C., Zhu, J.K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation1(1): 100017. https://doi.org/10.1016/ j.xinn.2020.100017
- Zhou, T., Geng, Y., Chen, J., Pan, J., Haase, D., & Lausch, A. (2020). High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Science of The Total Environment,729, 138244. https://doi.org/10.1016/j.scitotenv.2020.138244
- Zhou, Y., Hartemink, A.E., Shi, Z., Liang, Z., & Lu, Y. (2019). Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment,647, 1230-1238. https://doi.org/10.1016/j.scitotenv.2018.08.016
- Žížala, D., Minařík, R., & Zádorová, T. (2019). Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions. Remote Sensing,11(24), 2947. https://doi.org/10.3390/rs11242947.
|