- Akey, J. M. (2009). Constructing genomic maps of positive selection in humans: Where do we go from here? Genome Research, 19(5),711-722. http://dx.doi.org/1101/gr.086652.108.
- Al Kalaldeh, M., Gibson, J., Lee, S. H., Gondro, C., & Van Der Werf, J. H. (2019). Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep. Genetics Selection Evolution, 51(1),1-18. http://dx.doi.org/1186/s12711-019-0479-1.
- Álvarez, I., Fernández, I., Traoré, A., Pérez-Pardal, L., Menéndez-Arias, N. A., & Goyache, F. (2020). Ancient homozygosity segments in West African Djallonké sheep inform on the genomic impact of livestock adaptation to the environment. Animals, 10(7),1178. http://dx.doi.org/3390/ani10071178.
- Bakhshalizadeh, S., Zerehdaran, S., & Javadmanesh, A. (2021). Meta-analysis of genome-wide association studies for somatic cells score trait in dairy cows. Journal of Ruminant Research, 9(3),39-58. http://dx.doi.org/22069/ejrr.2021.19036.1787 (In Persian).
- Chen, Z.H., Xu, Y.X., Xie, X.L., Wang, D.F., Aguilar-Gómez, D., Liu, G.J., Li, X., Esmailizadeh, A., Rezaei, V., Kantanen, J., Ammosov, I. Nosrati, M., Periasamy, K., Coltman, D.W., Lenstra, L.A., Nielsen, R., & Li M.H. (2021). Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Communications Biology, 4(1),1-15. http://dx.doi.org/s42003-021-02817-4.
- Deng, X., Wang, D., Wang, S., Wang, H., & Zhou, H. (2018). Identification of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing. Biological Research, 51. http://dx.doi.org/1186/s40659-018-0174-7.
- Dong, K., Yao, N., Pu, Y., He, X., Zhao, Q., Luan, Y., Guan, W., Rao, S., & Ma, Y. (2014). Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One, 9(10),e110520. http://dx.doi.org/1371/journal.pone.0110520.
- Dou, D., Shen, L., Zhou, J., Cao, Z., Luan, P., Li, Y., Xiao, F., Guo, H., Li, H., & Zhang, H. (2022). Genome-wide association studies for growth traits in broilers. BMC Genomic Data, 23(1),1-9. http://dx.doi.org/1186/s12863-021-01017-7.
- Duarte, D.A.S., Fortes, M.R.S., de Souza Duarte, M., Guimarães, S.E., Verardo, L.L., Veroneze, R., Ribeiro, A.M.F., Lopes, P.S., de Resende, M.D.V., & e Silva, F.F. (2017). Genome-wide association studies, meta-analyses and derived gene network for meat quality and carcass traits in pigs. Animal Production Science, 58(6),1100-1108. http://dx.doi.org/1071/AN16018.
- Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature protocols, 4(8),1184-1191. http://dx.doi.org/1038/nprot.2009.97.
- Eydivandi, S., Sahana, G., Momen, M., Moradi, M. H., & Schönherz, A. A. (2020). Genetic diversity in Iranian indigenous sheep vis‐à‐vis selected exogenous sheep breeds and wild mouflon. Animal Genetics, 51(5),772-787. http://dx.doi.org/1111/age.12985.
- Forough Ameri, N., Asadi Fouzi, M., & Vasmeilizade Keshkoi, A., (2015). Whole genome scanning of eight indigenous breeds of Iranian cattle to identify selection markers. Livestock Production Magazine, 18(2),201-213. (In Persian).
- Guan, D., Luo, N., Tan, X., Zhao, Z., Huang, Y., Na, R., Zhang, J., & Zhao, Y. (2016). Scanning of selection signature provides a glimpse into important economic traits in goats (Capra hircus). Scientific Reports, 6(1),1-7. http://dx.doi.org/1038/srep36372.
- Gunawan, A., Listyarini, K., Harahap, R.S., Jakaria, Roosita, K., Sumantri, C., Inounu, I., Akter, S.H., Islam, M.A., & Uddin, M.J. (2021). Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PloS One, 16(12),e0260514. http://dx.doi.org/1371/journal.pone.0260514.
- Guomundsdottir, O. O. (2015). Genome-wide association study of muscle traits in Icelandic sheep (Doctoral dissertation). (Doctoral dissertation).
- Hazard, D., Mace, T., Foulquie, D., Delval, E., Douls, S., Carriere, F., Pradel, J., Moreno, C., & Boissy, A. (2018). Genome wide association studies of maternal behaviours in sheep. In: 11. World Congress on Genetics Applied to Livestock Production (WCGALP), pp. 1130-p. Massey Universtiy.
- Jiao, D., Ji, K., Liu, H., Wang, W., Wu, X., Zhou, J., Zhang, Y., Zhou, H., Hickford, J.G., Degen, A.A., & Yang, G. (2021). Transcriptome analysis reveals genes involved in thermogenesis in two cold-exposed sheep breeds. Genes, 12(3),375. http://dx.doi.org/3390/genes12030375.
- Krivoruchko, A. Y., Yatsyk, O. A., & Safaryan, E. Y. (2020). Candidate genes for productivity identified by genome-wide association study with indicators of class in the Russian meat merino sheep breed. Vavilov Journal of Genetics and Breeding, 24(8),836. http://dx.doi.org/18699/VJ20.681.
- Li, Z., He, X., Zhang, X., Zhang, J., Guo, X., Sun, W., & Chu, M. (2020). Transcriptome profile of key CircRNAs and MiRNAs in oviduct that affect sheep reproduction. http://dx.doi.org/21203/rs.3.rs-67727/v1.
- Liu, G., Liu, R., Tang, X., Cao, J., Zhao, S., & Yu, M. (2015). Expression profiling reveals genes involved in the regulation of wool follicle bulb regression and regeneration in sheep. International Journal of Molecular Sciences, 16(5),9152-9166. http://dx.doi.org/ 3390 / ijms16059152.
- Mohammadi, F., Tahmoorespur, M., & Javadmanesh, A. (2019). Study of differentially expressed genes, related pathways and gene networks in sheep fetal muscle tissue in thin-and fat-tailed breeds. Animal Sciences Journal, 32(123),301-312. http://dx.doi.org/22092 /asj .2018 .122913.1749.
- Mohammadi, H., Rafat, S. A., Moradi Shahrbabak, H., Shodja, J., & Moradi, M. H. (2020). Genome-wide association study and gene ontology for growth and wool characteristics in Zandi sheep. Journal of Livestock Science and Technologies, 8(2),45-55. http://dx.doi.org/22103/jlst.2020.15795.1317. (In Persian).
- Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13(1),1-15. http://dx.doi.org/1186/1471-2156-13-10.
- Mwacharo, J. M., Kim, E. S., Elbeltagy, A. R., Aboul-Naga, A. M., Rischkowsky, B. A., & Rothschild, M. F. (2017). Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts. Scientific reports, 7(1),1-10. http://dx.doi.org/1038/s41598-017-17775-3.
- Oldenbroek, K. (Ed.). (2007). Utilisation and Conservation of Farm Animal Genetic Resources. Wageningen Academic Publishers.
- Pickering, N. K. (2013). Genetics of flystrike, dagginess and associated traits in New Zealand dual-purpose sheep. A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at Massey University, Palmerston North, New Zealand (Doctoral dissertation, Massey University).
- Kaveh Pishghadam, N., Malekian, M., & Adavodi, R. (2017). Genetic assessment of funding population of wild sheep (Ovis orientalis) in Chadegan captive breeding site. Journal of Animal Environment, 9(3),41-48. http://dx.doi.org/1001.1.27171388.1396.9.3.6.6.(In Persian).
- Qanbari, S., Strom, T.M., Haberer, G., Weigend, S., Gheyas, A.A., Turner, F., Burt, D.W., Preisinger, R., Gianola, D., & Simianer, H. (2012). A high resolution genome-wide scan for significant selective sweeps: An application to pooled sequence data in laying chickens. PloS one, 7(11),e49525. http://dx.doi.org/1371/journal.pone.0049525.
- Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T.M., Fries, R., Nielsen, R., & Simianer, H. (2014). Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genetics, 10(2),e1004148. http://dx.doi.org/1371/journal.pgen.1004148.
- Sabeti, P.C., Reich, D.E., Higgins, J.M., Levine, H.Z., Richter, D.J., Schaffner, S.F., Gabriel, S.B., Platko, J.V., Patterson, N.J., McDonald, G.J., & Ackerman, H.C., Campbell, S. J., Altsshuler, D., Cooper, R., Kwiatkowski, D., Ward, R., & Lander, E. S. (2002). Detecting recent positive selection in the human genome from haplotype structure. Nature, 419(6909),832-837. http://dx.doi.org/1038/nature01140.
- Sabeti, P.C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E.H., McCarroll, S.A., Gaudet, R., & Schaffner, S.F. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164),913-918. http://dx.doi.org/1038/nature06250.
- Serranito, B., Cavalazzi, M., Vidal, P., Taurisson-Mouret, D., Ciani, E., Bal, M., Rouvellac, E., Servin, B., Moreno-Romieux, C., Tosser-Klopp, G., Hall, S.J. & Da Silva, A. (2021). Local adaptations of Mediterranean sheep and goats through an integrative approach. Scientific Reports, 11(1),1-17. http://dx.doi.org/s41598-021-00682-z.
- Suárez-Vega, A., Gutiérrez-Gil, B., & Arranz, J. J. (2016). Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds. Journal of Dairy Science, 99(8),6381-6390. http://dx.doi.org/3168/jds.2016-11048.
- Sweet‐Jones, J., Yurchenko, A. A., Igoshin, A. V., Yudin, N. S., Swain, M. T., & Larkin, D. M. (2021). Resequencing and signatures of selection scan in two Siberian native sheep breeds point to candidate genetic variants for adaptation and economically important traits. Animal Genetics, 52(1),126-131. http://dx.doi.org/1111/age.13015.
- Tao, L., He, X.Y., Wang, F.Y., Pan, L.X., Wang, X.Y., Gan, S.Q., Di, R., & Chu, M.X. (2021). Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Animal Genetics, 52(4),545-549. http://dx.doi.org/1111/age.13078.
- Taheri,, Zerehdaran, S., & Javadmanesh, A. (2020). Investigating genetic diversity and traces of selection in Iranian domestic and wild sheep and goats. M.Sc.Thesis of Ferdowsi University of Mashhad, Faculty of Agriculture, Mashhhad, Iran. (In Persian).
- Tsartsianidou, V., Sánchez-Molano, E., Kapsona, V.V., Basdagianni, Z., Chatziplis, D., Arsenos, G., Triantafyllidis, A., & Banos, G. (2021). A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genetics Selection Evolution, 53(1),1-17. http://dx.doi.org/1186/s12711-021-00682-7.
- Upadhyay, M., Kunz, E., Sandoval‐Castellanos, E., Hauser, A., Krebs, S., Graf, A., Blum, H., Dotsev, A., Okhlopkov, I., Shakhin, A., Bagirov, V., & Medugorac, I. (2021). Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep. Molecular Ecology, 30(24),6701-6717. http://dx.doi.org/1111/mec.16184.
- Wang, H., Zhang, L., Cao, J., Wu, M., Ma, X., Liu, Z., Liu, R., Zhao, F., Wei, C., & Du, L. (2015). Genome-wide specific selection in three domestic sheep breeds. PloS One, 10(6),e0128688. http://dx.doi.org/1371/journal.pone.0128688.
- Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 1358-1370.
- Wiener, P., Robert, C., Ahbara, A., Salavati, M., Abebe, A., Kebede, A., Wragg, D., Friedrich, J., Vasoya, D., Hume, D.A., Djikeng, A., & Clark, E. L. (2021). Whole-genome sequence data suggest environmental adaptation of Ethiopian sheep populations. Genome Biology and Evolution, 13(3), evab014. http://dx.doi.org/1093/gbe/evab014.
- Yang, J.I., Li, W.R., Lv, F.H., He, S.G., Tian, S.L., Peng, W.F., Sun, Y.W., Zhao, Y.X., Tu, X.L., Zhang, M., Xie, X.L., & Liu, M. J. (2016). Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Molecular Biology and Evolution, 33(10),2576-2592. http://dx.doi.org/10.1093/molbev/msw129.
- Zeraatpisheh, Y., Zerehdaran, S., & Javadmanesh, A. (2022). Investigation of metabolic pathways of genes related to the QTL of parasite resistance trait in sheep genome using gene network and gene ontology. Veterinary Researches & Biological Products. http://dx.doi.org/22092/vj.2022.357660.1941. (In Persian).
|