- Kono, Y. Ayukawa, Y. Moriyama, K. Kurata, K. H. Hiroshi Takamatsu and K. Koyano, “The effect of low-magnitude, high-frequency vibration stimuli on the bone healing of rat incisor extraction socket”, Journal of Biomechanical Engineering, vol. 134, no. 9, pp. 091001-091006, (2012).
- Uchida, K. Nakata, F. Kawano F., Y. Yonetani, I. Ogasawara, N. Nakai, T. Mae, T. Matsuo, Y. Tachibana, H. Yokoi, H. Yoshikawa, “Vibration acceleration promotes bone formation in rodent models”, PLOS One, vol. 12, no. 3, e0172614, (2017).
- Lau, S. Al-Dujaili, A. Guenther, D. Liu, L. Wang and L. You, “Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts”, Bone, vol. 46, no. 6, pp. 1508–1515, (2010).
- J. Cairns, M.J. Pearcy, J. Smeathers and C. Adam, “Ability of modal analysis to detect osseointegration of implants in transfemoral amputees: a physical model study”, Medical & Biological Engineering & Computing, vol. 51, pp. 39–47, (2013).
- X. Guo, M. Zhang, J.L. Li., Y.M. Zhang, Z.W. Wang and E.C. Teo, “Influence Prediction of Tissue Injury on Frequency Variations of the Lumbar Spine under Vibration”, OMICS A Journal of Integrative Biology, vol. 13, no. 6, pp. 521-526, (2009).
- X. Guo, M. Zhang, and Ming Zhang, “Finite Element Modeling and Modal Analysis of the Human Spine Vibration Configuration”, IEEE Transactions on Biomedical Engineering, vol. 58, no. 10, pp. 2987-2990, (2011).
- Verdenelli, R. Rossetti, P. Chiariotti, M. Martarelli and L. Scalise, “Experimental and numerical dynamic characterization of a human tibia”, Journal of Physics: Conference Series, 1149 (2018) 012029, AIVELA, (2018).
- L. Lin, S.Y. Lee, L.Y. Lee, W.T. Chiu, C.T. Lin and H.M. Huang, “Vibrational analysis of mandible trauma: experimental and numerical approaches”, Medical and Biological Engineering and Computing, vol. 44, no. 9, pp. 785–792, (2006).
- C. Pastrava, J. Devos, G. Van der Perrea and S.V.N. Jaecques, “A finite element analysis of the vibrational behaviour of the intra-operatively manufactured prosthesis–femur system”, Medical Engineering & Physics, vol. 31, no. 4, pp. 489–494, (2009).
- C. Hobatho, R. Darmana, P. Pastor, J. Barrau, S. Laroze and J. Morucci, “Development of a three-dimensional finite element model of a human tibia using experimental modal analysis”, Journal of Biomechanics, vol. 24, no. 6, pp. 371-383, (1991).
- Bediz, H. Nevzat Özgüven and F. Korkusuz, “Measuring Structural Dynamic Properties of Human Tibia by Modal Testing”, Proceedings of the 26th International Modal Analysis Conference, Orlando, Florida, February 4-7, (2008).
- R. Taylor, E. Roland, H. Ploeg, D. Hertig, R. Klabunde, M.D. Warner and S.E. Clift, “Determination of Orthotropic Bone Elastic Constants Using FEA and Modal Analysis”, Journal of Biomechanics, vol. 35, no. 6, pp. 767–773, (2002).
- Scholz, F. Hoffmann, S. von Sachsen, W. G. Drossel, C. Klöhn and C. Voigt, “Validation of density–elasticity relationships for finite element modeling of human pelvic bone by modal analysis”, Journal of Biomechanics, vol. 46, no. 15, pp. 2667-2673, (2013).
- F. Morgan, H.H. Bayraktar and T.M. Keaveny, “Trabecular bone modulus–density relationships depend on anatomic site”, Journal of Biomechanics, vol. 36, no. 7, pp. 897-904, (2003).
- Werner, M. Quickert and H. Kunze and C. Voigt, “Applying modal Analysis for comparing various FE models of human pelvic bone”, 16th International Congress on Sound and Vibration, Kraków, Poland, 5–9 July, (2009).
- Henys and L. Capek, “Computational modal analysis of a composite pelvic bone: convergence and validation studies”, Computer Methods in Biomechanics and Biomedical Engineering, vol. 22, no. 9, pp. 916-924, (2019).
- O. Moghaddam, M.J. Mahjoob and A. Nazarian, “Assigning Material Properties to Finite Element Models of Bone: A New Approach Based on Dynamic Behavior”, The 7th International Conference on Computational Methods, University of California at Berkeley, 1-4 August, (2016).
- J. Ewins, Modal Testing: Theory, Practice and Application, second edition, Wiley, pp. 303- 320, 2000.
- J. McBroom, W.C. Hayes, W.T. Edwards, R.P. Goldberg, and A.A.D. White, “Prediction of vertebral body compressive fracture using quantitative computed tomography”, Journal of Bone and Joint Surgery American, vol. 67, no. 8, pp. 1206–1214, (1985).
- Y. Rho, M.C. Hobatho and R.B. Ashman, “Relations of mechanical properties to density and CT numbers in human bone”, Medical Engineering & Physics, vol. 17, no. 5, pp. 347-355, (1995).
- Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjolfsson and M. Viceconti, “Mathematical relationships between bone density and mechanical properties: A literature review”, Clinical Biomechanics, vol. 23, no. 2, pp. 135–146, (2008).
- R. Carter and W.C. Hayes, “The compressive behavior of bone as a two-phase porous structure”, The Journal of Bone & Joint Surgery, vol. 59, no. 7, pp. 954-962, (1977).
- S. Keller, “Predicting the compressive mechanical behavior of bone”, Journal of Biomechanics, vol. 27, no. 9, pp. 1159-1168, (1994).
- Zhang, D.D. Arola and J.A. Rouland, “Evaluating the elastic modulus of bone using electronic speckle pattern interferometry”, Experimental Techniques, vol. 25, no. 5, pp. 32-34, (2001).
- D.M. Jones, M.A. Price and R.T. Berg, “The Density of Bovine Limb Bones”, Canadian Journal of Animal Science, vol. 58, no.1, pp. 105-106, (1978).
|