- Bagherifam, S., Lakzian, A., Fotovat, A., Khorasani, R., & Komarneni, S. (2014). In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. Journal of Hazardous Materials, 273, 247-252. http://dx.doi.org/10.1016/j.jhazmat.2014.03.054
- Bower, C.A., Reitemeier, R.F., & Fireman, M. (1954). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251-261.
- Brown, S., Chaney, R.L., Hallfrisch, J.G., & Xue, Q. (2003). Effect of biosolids processing on lead bioavailability in an urban soil. Journal of Environmental Quality, 32(1), 100-108.
- Burton, K.W., King, J.B., & Morgan, E. (1986). Chlorophyll as an indicator of the upper critical tissue concentration of cadmium in plants. Water, Air, and Soil Pollut, 27, 147-154.
- Ceribasi, I.H., & Yetis, U. (2001). Biosorption of Ni(ii) and Pb(ii) by Phanerochaete chrysosporium from binary metal system–kinetics. Water SA, 27(1), 15-20.
- Cook, M.E., & Morrow, H. (1995). Anthropogenic sources of cadmium in Canada, National Workshop on cadmium transport into plants. Canadian Network of Toxicology Centres, Ottawa, Ontario, Canada. June 20–21.
- Contin, M., Mondini, C., Leita, L., & De Nobili, M. (2007). Enhanced soil toxic metal fixation in iron (hydr) oxides by redox cycles. Geoderma, 140(1-2), 164-175.
- 8. Davis, R.D., Beckett, P.H.T., & Wollan, E. (1978). Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil, 49, 395-408
- Erfan Manesh, M., & Afyouni, M. (2008). Environment, water, soil and air pollution, Publications of Arkan Danesh, Isfahan. (In Persian)
- Farrokhian Firoozi, A., Amiri Mohammad, J., Hamidifar, H., & Bahrami, M. (2016). Degeneration of cadmium in soil using magnetite nanoparticles stabilized with sodium dodecyl sulfate. Journal of Water and Soil (Agricultural Sciences and Industries), 31(1), 241-253. (In Persian). http://dx.doi.org/10.22067/jsw.v31i1.50713
- Gee, G.W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of Soil Analysis. Part, 4(598): 255-293.
- Hamzeh Nezhad, R., Sepehr, E., Samadi, A., Sadeghiani, M.H.R., & Khodavardilo, H. (2018). Investigation of the effect of zero valent iron (nZVI) nanoparticles on the mobility and chemical forms of cadmium and lead in soil. Iranian Soil and Water Research, 49(3), 559-549. (In Persian). http://dx.doi.org/10.22059/ijswr.2018.228119.667634
- Hanauer, T., Felix-Hanningsen, P., Steffens, D., Kalandadze, B., Navrozashvili, L., & Urushadze, T. (2011). In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia. Plant and Soil, 341(1-2), 193-208. http://dx.doi.org/10.1007/s11104-010-0634-5
- Klute, A. (1986). Water retention: laboratory methods. pp: 635-660. In: A. Klute (Ed.). Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods. ASA and SSSA, Madison, WI.
- Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 144(1): 62-69. http://dx.doi.org/ 10.1016/j.envpol.2006.01.010
- Lindsay, W.L., & Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal, 42(3), 421- 428.
- Liu, R., & Zhao, D. (2007). In situ immobilization of Cu (II) in soils using a new class of iron phosphate nanoparticles. Chemosphere, 68(10): 1867-1876. http://dx.doi.org/10.1016/j.chemosphere.2007.03.010
- Mansouri, T., Golchin, A., & Baba Akbari Sari, M. (2015). Reducing the mobility of arsenic in soil with the help of hematite nanoparticles and acrylic polymers. Journal of Water and Soil Conservation Research, 23(6), 79-99. (In Persian with Enghlish abstract)
- McBride, M.B. (1994). Environmental chemistry of soils. Oxford University Press. New York.
- McLean, E.O. (1982). Soil pH and lime requirement. pp: 199-224. In: A.L. Page (Ed.). Methods of Soil Analysis. Part 2. Chemical and microbiological properties. ASA and SSSA, Madison, WI.
- Meyer, D., Bhattacharyya, D., Bachas, L., & Ritchie, S. (2005). Membrane-Based Nanostructured Metals for Reductive Degradation of Hazardous Organics. In ACS symposium series (Vol. 890, pp. 256-261). Oxford University Press.
- Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon and organic matter. pp: 539-579. In: Page A.L. (Ed.). Methods of Soil Analysis. Part 2. ASA and SSSA, Madison, WI.
- Rhoades, J.D. (1996). Electrical conductivity and total dissolved solids. In Methods of Soil Analysis, part 3, chemical methods.
- Sabouri, F., Fotovat, A., Astaraei, A., & Khorasani, R. (2014). Effect of iron nanoparticles on the distribution of chemical forms of lead in a calcareous soil. Journal of Soil and Water Conservation Research, 21(4), 118-99. (In Persian with Enghlish abstract)
- Tessier, A., Campbell, P.G.C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
- Zavareh, S.S., & Behrozi, Z. (2016). Removal of phosphate from natural waters using copper-saturated magnetic chitosan nanocomposite. The first seminar on applied chemistry in Iran. Faculty of Chemistry, University of Tabriz. (In Persian)
- Zhang, W.X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5(3-4), 323-332.
|