[1] P. Biswas, C. Y. Wu, "Nanoparticles and the environment" Journal of Air and Waste Management Association, vol. 6, no. 55, pp. 708-746, 2003.
[2] M. De, P. S. Gosh, and V. M. Rottelo, "Application of Nanoparticles in Biology." Advanced Materials, vol. 20, no. 22, pp. 4225-4241, 2008.
[3] C. M. Welsh, R. G. Compton, "The use of Nanoparticles in Electroanalysis: a review." Journal of Analytical and Bioanalytical Chemistry, vol. 384, no. 3, pp. 601-619, 2006.
[4] M. E. Grigore, E. R. Biscu, A. M. Holban, and M. C. Gestal, "Methods of synthesis, properties and biomedical applications of CuO nanoparticles." Journal of Pharmaceuticals, vol. 9, no. 4, pp. 75-89, 2016.
[5] J. Singh, G. Kaur, and M. Rawat, "A brief review on synthesis and characterization of copper oxide nanoparticles and it’s application." Journal of Bioelectronics and Nanotechnologies, vol. 1, no. 9, pp. 1-9, 2016.
[6] E. Carlos, R. Martines, E. Fortunato, and R. Branquinho, "Solution Combustion Synthesis: towards a sustainable approach for metal oxides." Chemistry-A Europian Journal, vol. 26, no. 42, pp. 9099-9125, 2020.
[7] A. Kumar, E. E. Wolf, and A. S. Mukasyan, "Solution Combustion Synthesis of Metal Nanopowders: Copper and Copper/Nickel Alloys." Journal of American Institute of Chemical Engineers, vol. 57, no. 12, pp. 3473-3479, 2011.
[8] H. Nasiri, J. V. Khaki, and S. M. Zebarjad, "one- step fabrication of Cu-Al2O3 nanocomposite via solution combustion synthesis route." Journal of Alloys and Compounds, vol. 509, no. 17, pp. 5305-5308, 2011.
[9] G. R. Rao, B. G. Mishra, and HR Sahu, "Synthesis of CuO, Cu and CuNi alloy particles by solution combustion using carbohydrazide and N-tertiarybutoxy-carbonylpiperazine fuels." Material Letters, vol. 58, no. 27-28, pp. 3523-3527, 2004.
[10] K. B. Podbolotov, A. A. Khort, A. B. Tarasov, G. V. Trusov, S. I. Roslyakov, and A. S. Mukasyan, "Solution Combustion Synthesis of Copper Nanopowders: The Fuel Effect." Journal of Combustion Science and Technology, vol. 189, no. 11, pp. 1878-1890, 2017.
[11] C. Xu, K. V. Manukyan, R. A. Adams, V. G. Pol, P. Chen, and A. Varma, "One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life." Carbon, vol. 142, pp. 51-59, 2019.
[12] A. Bouafia, S. E. Laouini, and M. R. Ouahrani, "A review on Green Synthesis of CuO Nanoparticles using Plant extract and evaluation of Antibacterial activity." Journal of Research in Chemistry, vol. 13, no. 1, pp. 65-70, 2020.
[13] Y. N. Slavin, J. Asnis, U. O. Hafeli, and H. Bach, "Metal nanoparticles: understanding the mechanisms behind antibacterial activity." Journal of Nanobiotechnology, vol. 15, no. 1, pp. 1-20, 2017.
[14] O. Akhavan, R. Azimirad, S. Safa, and E. Hasani, "CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts ." Journal of Materials Chemistry, vol. 21, no. 26, pp. 9634-9640, 2011.
[15] I. Preleshtein, G. Applerot, N. Perkas, E. Wehrschuetz-Sigl, A. Hasmann, G. Gubitz, and A. Gedanken, "CuO-cotton nanocomposites : Formation, morphology, and antibacterial activity." Surface and Coating Technology, vol. 204, no. 1-2, pp. 54-57, 2009.
[16] A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and A. Memic, "Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and Gram-negative bacterial strains." International Journal of Nanomedicine, vol. 21, no. 26, pp. 3527-3535, 2012.
[17] A. Ananth, S. Dharaneedharan, M. S. Heo , and Y. S. Mok, "Copper oxide nanomaterials: Synthesis, characterization, and structure-specific antibacterial performance. "Chemical Engineering Journal, vol. 262, pp. 179-188, 2015.
[18] S. Meghana, P. Kabra, S. Chakraborty, and N. Padmavathy, " Understanding the pathway of antibacterial activity of copper oxide nanoparticles ." Journal of Chemical Society Advances, vol. 5, no. 16, pp. 12293-12299, 2015.
[19] D. Das, B. C. Nath, P. Phukon, and S. Dolui, "Synthesis and evolution of antioxidant and antibacterial behavior of CuO nanoparticles." Jounal of Colloids and surfaces B: Biointerfaces, vol. 101, pp. 430-433, 2013.
[20] S. R. Jain, K. C. Adiga, and V. R. P. Verneker, "A new approach to thermomechanical calculation of condensed fuel-oxidizer mixtures." Combustion and Flame, vol. 40, pp. 71-79, 1981.
[21] T. Wadhwani, K. Desai, D. Patel, D. Lawani, P. Bahaley, P. Joshi, and V. Kothari, "Effect of various solvents on bacterial groth in context of determining MIC of various antimicrobials." The Internet Jounal of Microbiology, vol. 7, no.1, pp. 1-8, 2009.
[22] J. J. Modrzynski, J. H. Christensen, and K. K. Brandt, "Evaluation of dimethyl sulfoxide (DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds." Jounal of Ecotoxicology, vol. 28, no. 9, pp. 1136-1141, 2019.
[23] P. Christofilogiannis, "Current inoculation methods in MIC determination". Aquaculture, vol. 196, no. 3-4, pp. 297-302, 2001.
[24] A. Godymchuk, G. Frolov, A. Gusev, O. Zakharova, E. Yunda, D. Kustensov, and E. Kolesnikov, "Antibacterial Properties of Copper Nanoparticle Dispersions: Influence of Synthesis Conditions and Physicochemical Characteristics." Journal of Materials Science and Engineering, vol. 98, no. 1, pp. 1-8, 2015.
[25] D. Megrian, N. Taib, J. Witwinowski, C. Beloin, and S. Gribaldo, "One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide." Jounal of Molecular Microbiology, vol. 113, no. 3, pp. 659-671, 2020.
[26] K. C. Barabaszova, S. Holesova, M. Bily, and M. Hundakova, "CuO and CuO/vermiculite based nanoparticles in antibacterial PVAc nanocomposites." Jounal of Inorganic and Organometallic Polymers and Materials, vol. 30, no. 10, pp. 4218-4227, 2020.
[27] D. M. Aruguete, M. F. Hochella, "Bacteria-nanoparticle interactions and their environmental implications." Jounal of Environmental Chemistry, vol. 7, no. 1, pp. 3-9, 2010.
[28] P. K. Yadav, C. Kochar, L. Taneja, and S. S. Tripathy, "Study on dissolution behavior of CuO nanoparticles in various synthetic media and natural aqueous medium." Jounal of Nanoparticle Research, vol. 24, no. 6, pp. 1-16, 2022.