[1] Aboodh, K.S. The new integral transform ’Aboodh transform’, Glob. J. Pure Appl. Math. 9(1) (2013), 35–43.
[2] Aggarwal, S., Gupta, A.R. and Kumar, D. Mohand transform of error function, Int. J. Res. Advent Technol. 7(5) (2019), 224–231.
[3] Aggarwal, S., Gupta, A.R., Sharma, S.D., Chauhan, R. and Sharma, N. Mahgoub transform (Laplace-Carson transform) of error function, International Journal of Latest Technology in Engineering, Management & Applied Science 8(4) (2019), 92–98.
[4] Ahmadi, S.A.P., Hosseinzadeh, H. and Cherati, A.Y. A new integral transform for solving higher order linear ordinary Laguerre and hermite differential equations, Int. J. Appl. Comput. Math. 5(5) (2019), 1–7.
[5] Akinyemi, L. and Iyiola, O.S. Exact and approximate solutions of time-fractional models arising from physics via Shehu transform, Math. Meth-ods Appl. Sci. 43(12) (2020), 7442–7464.
[6] Atangana, A. and Kilicman, A. A novel integral operator transform and its application to some f FODE and FPDE with some kind of singulari-ties, Math. Probl. Eng. (2013), Art. ID 531984, 7 pp.
[7] Babolian, E., Biazar, J. and Vahidi, A. A new computational method for Laplace transforms by decomposition method, Appl. Math. Comput. 150(3) (2004), 841–846.
[8] Barnes, B. Polynomial integral transform for solving differential equa-tions, Eur. J. Pure Appl. Math. 9(2) (2016), 140–151.
[9] Bochner, S., Chandrasekharan, K. and Chandrasekharan, K. Fourier transforms, Princeton University Press, 1949.
[10] Davies, B. and Martin, B. Numerical inversion of the Laplace transform: a survey and comparison of methods, J. Comput. Phys. 33(1) (1979), 1–32.
[11] Djebali, R., Mebarek-Oudina, F. and Rajashekhar, C. Similarity solu-tion analysis of dynamic and thermal boundary layers: further formula-tion along a vertical flat plate, Physica Scripta 96(8) (2021), 085206.
[12] Elzaki, T. M. The new integral transform Elzaki transform, Glob. J. Pure Appl. Math. 7(1) (2011), 57–64.
[13] Filipinas, J.L.D.C. and Convicto, V.C. On another type of transform called Rangaig transform, International Journal 5(1) (2017), 42–48.
[14] Grinshpan, A.Z. Weighted norm inequalities for convolutions, differen-tial operators, and generalized hypergeometric functions, Integral Equa-tions Operator Theory 75(2) (2013), 165–185.
[15] Gupta, V.G., Shrama, B. and Kiliçman, A. A note on fractional Sumudu transform, J. Appl. Math. (2010), Art. ID 154189, 9 pp.
[16] Haroon, F., Mukhtar, S. and Shah, R. Fractional view analysis of Fornberg– Whitham equations by using Elzaki transform, Symmetry 14(10) (2022), 2118.
[17] He, J.-H. Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg. 178(3-4) (1999), 257–262.
[18] Higazy, M. and Aggarwal, S. Sawi transformation for system of ordinary differential equations with application,Ain Shams Eng. J. 12(3) (2021), 3173–3182.
[19] Khan, M., Gondal, M.A., Hussain, I. and Vanani, S.K. A new compar-ative study between homotopy analysis transform method and homotopy perturbation transform method on a semi infinite domain, Math. Com-put. Model. 55(3-4) (2012), 1143–1150.
[20] Khan, Z.H. and Khan, W.A. N-transform properties and applications, NUST J. Eng. Sci. 1(1) (2008), 127–133.
[21] Kumar, S., Kumar, A., Kumar, D., Singh, J. and Singh, A. Analytical solution of Abel integral equation arising in astrophysics via Laplace transform, J. Egyptian Math. Soc. 23(1) (2015), 102–107.
[22] Maitama, S. and Zhao, W. New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations, arXiv preprint arXiv:1904.11370 (2019).
[23] Mullineux, N. and Reed, J. Numerical inversion of integral transforms, Computers & Mathematics with Applications 3(4) (1977), 299–306.
[24] Ramadan, M.A., Raslan, K.R., El-Danaf, T.S. and Hadhoud, A.R. On a new general integral transform: some properties and remarks, J. Math. Comput. Sci. 6(1) (2016), 103–109.
[25] Raza, J., Mebarek-Oudina, F. and Ali Lund, L. The flow of magne-tised convective Casson liquid via a porous channel with shrinking and stationary walls, Pramana 96(4) (2022) 229.
[26] Saadeh, R.Z. and Ghazal, B.F. A new approach on transforms: Formable integral transform and its applications, Axioms 10(4) (2021), 332.
[27] Saadeh, R., Qazza, A. and Burqan, A. A new integral transform: Ara transform and its properties and applications, Symmetry 12(6) (2020), 925.
[28] Sadefo Kamdem, J. Generalized integral transforms with the homo-topy perturbation method, J. Math. Model. Algorithms Oper. Res. 13(2) (2014), 209–232.
[29] Schiff, J L. The Laplace transform: theory and applications, Springer Science & Business Media, 1999.
[30] Shah, K., Khalil, H. and Khan, R.A. Analytical solutions of fractional order diffusion equations by natural transform method, Iran. J. Sci. Tech-nol. Trans. A Sci. 42(3) (2018), 1479–1490.
[31] Silva, F.S., Moreira, D.M. and Moret, M.A. Conformable Laplace trans-form of fractional differential equations, Axioms 7(3) (2018), 55.
[32] Tripathi, R. and Mishra, H.K. Homotopy perturbation method with Laplace transform (LT-HPM) for solving Lane–Emden type differential equations (LETDEs), SpringerPlus 5(1) (2016), 1–21.
[33] Watugala, G. Sumudu transform: a new integral transform to solve dif-ferential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech. 24(1) (1993), 35–43.
[34] Widder, D.V. Laplace transform (PMS-6), Princeton university press, 2015.
[35] Yang, X.-J. A new integral transform with an application in heat-transfer problem, Ther. Sci. 20(3) (2016), 677–681.
[36] Y¨uzbaı, ., Sezer, M. and Kemancı, B. Numerical solutions of integro-differential equations and application of a population model with an im-proved Legendre method, Appl. Math. Model. 37(4) (2013), 2086–2101.
[37] Zhao, W. and Maitama, S. Beyond sumudu transform and natural transform : transform properties and applications, J. Appl. Anal. Com-put. 10(4) (2020), 1223–1241.