- Aguilar , I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93(2),743–752. https://doi.org/10.3168/jds.2009-2730
- Alvarenga, A. B., Veroneze, R., Oliveira, H. R., Marques, D. B. D., Lopes, P. S., Silva, F. F., & Brito, L. F. (2020). Comparing alternative single-step GBLUP approaches and training population designs for genomic evaluation of crossbred animals. Frontiers in Genetics, 11(April),1–19. https://doi.org/10.3389/fgene.2020.00263
- Campos, G. D. L., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., Sorensen, D., de los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., & Sorensen, D. (2013). Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genetics, 9(7). https://doi.org/10.1371/journal.pgen.1003608
- Cesarani, A., Lourenco, D., Tsuruta, S., Legarra, A., Nicolazzi, E. L., VanRaden, P. M., & Misztal, I. (2022). Multibreed genomic evaluation for production traits of dairy cattle in the United States using single-step genomic best linear unbiased predictor. Journal of Dairy Science, 105(6),5141–5152. https://doi.org/10.3168/jds.2021-21505
- Cole, J. B., van Raden, P. M., O’Connell, J. R., van Tassell, C. P., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., & Wiggans, G. R. (2009). Distribution and location of genetic effects for dairy traits. Journal of Dairy Science, 92(6),2931–2946. https://doi.org/10.3168/jds.2008-1762
- Daetwyler, H. D., Kemper, K. E., van der Werf, J. H. J., & Hayes, B. J. (2012). Components of the accuracy of genomic prediction in a multi-breed sheep population. Journal of Animal Science, 90(10),3375–3384. https://doi.org/10.2527/jas.2011-4557
- De Roos, A. P. W., Hayes, B. J., Spelman, R. J., & Goddard, M. E. (2008). Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics, 179(3),1503–1512. https://doi.org/10.1534/genetics.107.084301
- Erbe, M., Hayes, B. J., Matukumalli, L. K., Goswami, S., Bowman, P. J., Reich, C. M., Mason, B. A., & Goddard, M. E. (2012). Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Journal of Dairy Science, 95(7),4114–4129. https://doi.org/10.3168/jds.2011-5019
- Gao, H., Christensen, O. F., Madsen, P., Nielsen, U. S., Zhang, Y., Lund, M. S., & Su, G. (2012). Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genetics Selection Evolution, 44(1),8. https://doi.org/10.1186/1297-9686-44-8
- Goddard, M. E., & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 10(6),381–391. https://doi.org/10.1038/nrg2575
- Gualdrón Duarte, J. L., Gori, A. S., Hubin, X., Lourenco, D., Charlier, C., Misztal, I., & Druet, T. (2020). Performances of Adaptive MultiBLUP, Bayesian regressions, and weighted-GBLUP approaches for genomic predictions in Belgian Blue beef cattle. BMC Genomics, 21(1). https://doi.org/10.1186/s12864-020-06921-3
- Kemper, K. E., Reich, C. M., Bowman, P. J., Vander Jagt, C. J., Chamberlain, A. J., Mason, B. A., Hayes, B. J., & Goddard, M. E. (2015). Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Genetics Selection Evolution, 47(1),1–17. https://doi.org/10.1186/s12711-014-0074-4
- Legarra, A., Christensen, O. F., Aguilar, I., & Misztal, I. (2014). Single Step, a general approach for genomic selection. Livestock Science, 166(1),54–65. https://doi.org/10.1016/j.livsci.2014.04.029
- Legarra, A., Christensen, O. F., Vitezica, Z. G., Aguilar, I., & Misztal, I. (2015). Ancestral relationships using metafounders: Finite ancestral populations and across population relationships. Genetics, 200(2),455–468. https://doi.org/10.1534/genetics.115.177014
- Liu, X., Tian, D., Li, C., Tang, B., Wang, Z., Zhang, R., Pan, Y., Wang, Y., Zou, D., Zhang, Z., & Song, S. (2023). GWAS Atlas: An updated knowledgebase integrating more curated associations in plants and animals. Nucleic Acids Research, 51(D1),D969–D976. https://doi.org/10.1093/nar/gkac924
- Lourenco, D., Legarra, A., Tsuruta, S., Masuda, Y., Aguilar, I., & Misztal, I. (2020). Single-step genomic evaluations from theory to practice: using snp chips and sequence data in blupf90. Genes, 11(7),1–32. https://doi.org/10.3390/genes11070790
- Lund, M. S., Sahana, G., de Koning, D. J., Su, G., & Carlborg, Ö. (2009). Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection. BMC Proceedings, 3(S1),1–8. https://doi.org/10.1186/1753-6561-3-s1-s1
- Meuwissen, T. H., Solberg, T. R., Shepherd, R., & Woolliams, J. A. (2009). A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value. Genetics Selection Evolution, 41(2),1–10. https://doi.org/10.1186/1297-9686-41-2
- Pedrosa, V. B., Boerman, J. P., Gloria, L. S., Chen, S.-Y., Montes, M. E., Doucette, J. S., & Brito, L. F. (2023). Genomic-based genetic parameters for milkability traits derived from automatic milking systems in North American Holstein cattle. Journal of Dairy Science, 106(4), 2613-2629. https://doi.org/10.3168/jds.2022-22515
- Pérez, P., & De Los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2),483–495. https://doi.org/10.1534/genetics.114.164442
- Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3),559–575. https://doi.org/10.1086/519795
- Raven, L. A., Cocks, B. G., & Hayes, B. J. (2014). Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-62
- Reales, G., & Wallace, C. (2023). Sharing GWAS summary statistics results in more citations. Communications Biology, 6(1),6–11. https://doi.org/10.1038/s42003-023-04497-8
- Sanchez, M. P., Govignon-Gion, A., Croiseau, P., Fritz, S., Hozé, C., Miranda, G., Martin, P., Barbat-Leterrier, A., Letaïef, R., Rocha, D., Brochard, M., Boussaha, M., & Boichard, D. (2017). Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genetics Selection Evolution, 49(1),68. https://doi.org/10.1186/s12711-017-0344-z
- Su, G., Christensen, O. F., Janss, L., & Lund, M. S. (2014). Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Journal of Dairy Science, 97,6547–6559. https://doi.org/10.3168/jds.2014-8210
- Su, G., Guldbrandtsen, B., Gregersen, V. R., & Lund, M. S. (2010). Preliminary investigation on reliability of genomic estimated breeding values in the Danish Holstein population. Journal of Dairy Science, 93(3),1175–1183. https://doi.org/10.3168/jds.2009-2192
- Tiezzi, F., & Maltecca, C. (2015). Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genetics Selection Evolution, 47(1),1–13. https://doi.org/10.1186/s12711-015-0100-1
- van den Berg, I., Boichard, D., & Lund, M. S. (2016). Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds. Journal of Dairy Science, 99(11),8932–8945. https://doi.org/10.3168/jds.2016-11073
- Vanraden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science, 91(11),4414–4423. https://doi.org/10.3168/jds.2007-0980
- Veroneze, R., Lopes, P. S., Lopes, M. S., Hidalgo, A. M., Guimarães, S. E. F., Harlizius, B., Knol, E. F., van Arendonk, J. A. M., Silva, F. F., & Bastiaansen, J. W. M. (2016). Accounting for genetic architecture in single- and multipopulation genomic prediction using weights from genomewide association studies in pigs. Journal of Animal Breeding and Genetics, 133(3),187–196. https://doi.org/10.1111/jbg.12202
- Wang, H., Misztal, I., Aguilar, I., Legarra, A., Fernando, R. L., Vitezica, Z., Okimoto, R., Wing, T., Hawken, R., & Muir, W. M. (2014). Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Frontiers in Genetics, 5(MAY),134. https://doi.org/10.3389/fgene.2014.00134
- Wang, H., Misztal, I., Aguilar, I., Legarra, A., & Muir, W. M. (2012). Genome-wide association mapping including phenotypes from relatives without genotypes. Genetics Research, 94(2),73–83. https://doi.org/10.1017/S0016672312000274
- Wientjes, Y. C. J., Bijma, P., Vandenplas, J., & Calus, M. P. L. (2017). Multi-population genomic relationships for estimating current genetic variances within and genetic correlations between populations. Genetics, 207(2),503–515. https://doi.org/10.1534/genetics.117.300152
- Wientjes, Y. C. J., Calus, M. P. L., Goddard, M. E., & Hayes, B. J. (2015). Impact of QTL properties on the accuracy of multi-breed genomic prediction. Genetics Selection Evolution, 47(1),42. https://doi.org/10.1186/s12711-015-0124-6
- Wijesena, H. R., Nonneman, D. J., Snelling, W. M., Rohrer, G. A., Keel, B. N., & Lents, C. A. (2023). gBLUP-GWAS identifies candidate genes, signaling pathways, and putative functional polymorphisms for age at puberty in gilts. Journal of Animal Science. https://doi.org/10.1093/jas/skad063
- Wu, X., Lund, M. S., Sun, D., Zhang, Q., & Su, G. (2015). Impact of relationships between test and training animals and among training animals on reliability of genomic prediction. Journal of Animal Breeding and Genetics, 132(5),366–375. https://doi.org/10.1111/jbg.12165
- Zhang, X., Lourenco, D., Aguilar, I., Legarra, A., & Misztal, I. (2016). Weighting strategies for single-step genomic BLUP: An iterative approach for accurate calculation of GEBV and GWAS. Frontiers in Genetics, 7(AUG),151. https://doi.org/10.3389/fgene.2016.00151
- Zhang, Z., Liu, J., Ding, X., Bijma, P., de Koning, D. J., & Zhang, Q. (2010). Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS ONE, 5(9),1–8. https://doi.org/10.1371/journal.pone.0012648
- Zhang, Z., Ober, U., Erbe, M., Zhang, H., Gao, N., He, J., Li, J., & Simianer, H. (2014). Improving the Accuracy of Whole Genome Prediction for Complex Traits Using the Results of Genome Wide Association Studies. PLoS ONE, 9(3),1–12. https://doi.org/10.1371/journal.pone.0093017
- Zhou, L., Lund, M. S., Wang, Y., & Su, G. (2014). Genomic predictions across Nordic Holstein and Nordic Red using the genomic best linear unbiased prediction model with different genomic relationship matrices. Journal of Animal Breeding and Genetics, 131(4). https://doi.org/10.1111/jbg.12089
|