Amouzou, K. A., Lamers, J. P., Naab, J. B., Borgemeister, C., Vlek, P., & Land Becker, M. (2019). Climate change impact on water-and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. Field Crops Research, 235, 104-117. https://doi.org/10.1016/j.fcr.2019.02.021
Araya, A., Kisekka, I., Lin, X., Prasad, P. V., Gowda, P. H., Rice, C., & Andales, A. (2017). Evaluating the impact of future climate change on irrigated maize production in Kansas. Climate Risk Management, 17, 139-154. https://doi.org/10.1016/j.crm.2017.08.001
Bowling, L. C. M., Widhalm, M., Cherkauer, K. A., Beckerman, J., Brouder, S., Buzan, J., Doering, O., Dukes, J., Ebner, P., & Frankenburger, J. (2018). Indiana’s Agriculture in a Changing Climate: A Report from the Indiana Climate Change Impacts Assessment. Agriculture Reports. https://doi.org/10.5703/1288284316778
Cairns, J. E., Crossa, J., Zaidi, P. H., Grudloyma, P., Sanchez, C., Araus, J. L., Thaitad, S., Makumbi, D., Magorokosho, C., Bänziger, M., & Menkir, A. (2013). Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science, 53(4), 1335-1346. https://doi.org/10.2135/cropsci2012.09.0545
Crafts-Brander, S. J., & Salvucci, M. E. (2002). Sensitivity of photosynthesis in a C 4 plant, maize to heat stress. Plant Physiology, 129(4), 1773-1780. https://doi.org/10.1104/pp.002170
Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T. A. M., & Boote, K. J. (2016). Regional disparities in the beneficial effects of rising CO 2 concentrations on crop water productivity. Nature Climate Change, 6(8), 786-790. https://doi.org/10.1038/nclimate2995
Dias, M. P. N. M., Navaratne, C. M., Weerasinghe, K. D. N., & Hettiarachchi, R. H. A. N. (2016). Application of DSSAT crop simulation model to identify the changes of rice growth and yield in Nilwala river basin for mid-centuries under changing climatic conditions. Procedia food science, 6, 159-163. https://doi.org/10.1016/j.profoo.2016.02.039
Doorenbos, J., & Kassam, A. H. (1979). Yield Response to Water. FAO. Irrigation and Drainage Paper No. 33. FAO, Rome, Italy.
Hay, R. K. M., & Walker, A. J. (1989). An Introduction to the Physiology of Crop Yield. Longman Scientific and Technical Press Inc., New York.
Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J., Hunt, L. A., Singh, U., Lizaso, J. L., White, J. W., Uryasev, O., Ogoshi, R., Koo, J., Shelia, V., & Tsuji, G. Y. (2015). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net). DSSAT Foundation, Prosser, Washington.
Islama, A., Ahuja, R. L., Garciab, L. A., Ma, L., Saseendran, A. S., & Trout, T. J. (2012). Modeling the impacts of climate change on irrigated maize production in the Central Great Plains. Agricaltural Water Management, 110(C), 94-108. https://doi.org/10.1016/j.agwat.2012.04.004
Li, X., Takahashi, T., Suzuki, N., & Kaiser, H. M. (2011). The impact of climate change on maize yields in the United States and China. Agricultural Systems, 104, 348-353. https://doi.org/10.1016/j.agsy.2010.12.006
Liu, Z., Hubbard, K. G., Lin, X., & Yang, X. (2013). Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, 19(11), 3481-3492. https://doi.org/10.1111/gcb.12324
MarkSim. (2018). http://gismap.ciat.cgiar.org/MarkSimGCM
Meza, F. J., Silva, D., & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems, 98(1), 21-30. https://doi.org/10.1016/j.agsy.2008.03.005
Mondani, F. (2018). Simulation of Nitrogen Fertilizer Effect on Maize ( Zea maize) Production by CERES-Maize Model under Kermanshah Climate Condition. Water and Soil, 31(6), 1665-1678. https://doi.org/10.22067/jsw.v31i6.61895. (in Persian with English abstract).
Mondani, F., Karami, P., & Ghobadi, R. (2021). Simulation of moisture regimes effect on maize (Zea mays) growth and yield in Kermanshah region by CERES-Maize model. Crop Science Research in Arid Regions, 3(1), 39-56. https://doi.org/10.22034/csrar.2021.280069.1091. (in Persian with English abstract).
Moradi, R., Koocheki, A., & Nassiri Mahallati, M. (2014). Effect of Climate Change on Maize Production and Shifting of Planting Date as Adaptation Strategy in Mashhad. Journal of Agricultural Science and Sustainable Production, 23(4), 111-130. (in Persian with English abstract).
Ozkan, B., & Akcaoz, H. (2002). Impacts of climate factors on yields for selected crops in southern Turkey. Mitigation and Adaptation Strategies for Global Change, 7, 367-380. https://doi.org/10.1023/A:1024792318063
Rahimi-Moghaddam, S., Kambouzia, J., & Deihimfard, R. (2018). Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology, 253, 1-14. https://doi.org/10.1016/j.agrformet.2018.01.032
RCP. (2014). https://en.wikipedia.org/wiki/Representative_Concentration_Pathway
Rezaei, E. E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: mechanisms and modelling. European Journal of Agronomy, 64, 98-113. https://doi.org/10.1016/j.eja.2014.10.003
Rosenzweig, C., & Tubiello, F. N. (2007). Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change, 12, 855-873. https://doi.org/10.1007/s11027-007-9103-8
Sarker, K. K., Akanda, M. A., Biswas, S. H., Roy, D. K., Khatun, A., & Goftar, M. A. (2016). Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability. Journal of Integrative Agriculture, 15(10), 2380-2392. https://doi.org/10.1016/S2095-3119(16)61370-9
Shiri, M. (2018). The mitigation of climate change effect on maize grain yield by changing of planting date in Moghan. Cereal Research, 7(4), 563-578. https://doi.org/10.22124/c.2018.5574.1216. (in Persian with English abstract).
Southworth, J., Randolph, J. C., Habeck, M., Doering, O. C., Pfeifer, R. A. Rao, D. G., & Johnston, J. J. (2000). Consequences of future climate change and changing climate variability on maize yields in the midwestern United States. Agriculture, Ecosystems and Environment, 82, 139-158. https://doi.org/10.1016/S0167-8809(00)00223-1
Srivastava, A. K., Mboh, C. M., Zhao, G., Gaiser, T., & Ewert, F. (2018). Climate change impact under alternate realizations of climate scenarios on maize yield and biomass in Ghana. Agricultural Systems, 159, 157-174. https://doi.org/10.1016/j.agsy.2017.03.011
Teixeira, E. I., Fischer, G., Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206-215. https://doi.org/10.1016/j.agrformet.2011.09.002
Tingem, M., & Rivington, M. (2009). Adaptation for crop agriculture to climate change in Cameroon: Turning on the heat. Mitigation and Adaptation Strategies for Global Change, 14, 153-168. https://doi.org/10.1007/s11027-008-9156-3
Tubiello, F. N., Jagtap, S., Rosenzweig, C., Goldberg, R., & Jones, J. W. (2002). Effects of climate change on US crop production from the National Assessment. Simulation results using two different GCM scenarios. Part I: Wheat, Potato, Corn, and Citrus. Climate research, 20(3), 259-270. https://doi.org/10.3354/cr020259
Tubiello, F. N., Soussana, J. F. O., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19686-19690. https://doi.org/10.1073/pnas.0701728104
Ummenhofer, C., Xu, H., Twine, T., Girvetz, E., McCarthy, H., Chhetri, N., & Nicholas, K. (2015). How climate change affects extremes in maize and wheat yield in two cropping regions. Journal of Climate, 28(12), 4653-4687. https://doi.org/10.1175/JCLI-D-13-00326.1
Wang, Z. R., Rui, Y. K., Shen, J. B., & Zhang, F. S. (2008). Effects of N fertilizer on root growth in Zea mays L. seedlings. Spanish Journal of Agricultural Research, 6(4), 677-682. https://doi.org/10.5424/sjar/2008064-360
Zheng, B., Chenu, K., Dreccer, M. F., & Chapman, S. C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat ( Triticum aestivium) varieties? Global Change Biology, 18(9), 2899-2914. https://doi.org/10.1111/j.1365-2486.2012.02724.x
|