- Agriculture Ministry of Iran, (2021). https://iranslal.com
- Ahmadi, M.A., Soleimani, R., Lee, M., Tomoaki Kashiwao, T., & Bahadori, A. (2015). Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool. Journal of Petroleum, 1, 118-132. http://dx.doi.org/10.1016/j.petlm.2015.06.004
- Ahumadaa, H., & Cornejo, M. (2016). Forecasting food prices: The case of corn, soybeans and wheat. International Journal of Forecasting, 32, 838-848. http://dx.doi.org/10.1016/j.ijforecast.2016.01.002
- Aiolfia, M., & Timmermann, A. (2006). Persistence in forecasting performance and conditional combination strategies. Journal of Econometrics, 135, 31-53.
- Ajmera, R., Kook, N., & Crilley, J. (2012). Impact of commodity price movements on CPI inflation. Monthly Labor Review, 29-43. http://www.jstor.org/stable/monthlylaborrev.2012.04.029
- Allen, R., Zivin, G., & Shrader, J. (2016). Forecasting in the presence of expectations. European. Physical Journal Special Topics, 225, 539-550.
- Amiri, M., Ghiasi-Freez, J., Golkar, B., & Hatampour, A. (2015). Improving water saturation estimation in a tight Shaly sandstone reservoir using artificial neural network optimized by imperialist competitive algorithm-A case study. Journal of Petroleum Science and Engineering, 127, 347-358.
- Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congress on Evolutionary Computation. IEEE, 4661-4667. http://dx.doi.org/10.1109/CEC.2007.4425083
- Atsalakis, G.S. (2014). Agriculture commodity prices forecasting using a fuzzy inference system. Journal of Agricultural Cooperative Management and Policy, 353-368.
- Chandrasekaran, M., & Tamang, S. (2017). ANN-PSO Integrated optimization methodology for intelligent control of MMC machining. Journal of Institution Engineers India Series C, 98(4): 395-401. https://doi.org/10.1007/s40032-016-0276-3
- Chen, P. (2015). Global oil prices, macroeconomic fundamentals and China's commodity sector comovements. Journal of Energy Policy, 87, 284-294.
- Chen, S., Wang, P.P., & Tzu-Wen Kuo, T. (2010). Computational intelligence in economics and finance: shifting the research frontier. Journal of New Mathematics and Natural Computation, 2(3), 1-23.
- Costantinia, M., & Pappalardob, C. (2010). A hierarchical procedure for the combination of forecasts. International Journal of Forecasting, 26, 725-743. https://doi.org/10.1016/j.ijforecast.2009.09.006
- Das, S.P., & Padhy, S. (2015). A novel hybrid model using teaching learning-based optimization and a support vector machine for commodity futures index forecasting. International Journal Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-015-0359-0
- Dreibus, T.C., Josephs, , & Jargon, J. (2014). Food prices surge as drought exacts a high toll on crops. Wall Street Journal. (www. Wsj.com/articles)
- (2022). World food and agriculture statistical pocketbook. Food and Agriculture Organization of the United Nations.
- Fowowe, B. (2016). Do oil prices drive agricultural commodity prices? Evidence from South Africa. Journal of Energy, 104, 149-157.
- Garganoa, A., & Timmermannb, A. (2013). Forecasting commodity price indexes using macroeconomic and financial predictors. International Journal of Forecasting, 30(3), 825-843.
- Gaur, Sh., Sudheer, Ch., Graillot, D., Chahar B.R., & Kumar, D.N. (2013). Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Journal of Water Resour Manage, 27, 927-941. https://doi.org/10.1007/s11269-0120226-7
- Hasan, M.M., Zahara, M.T., Sykot, M.M., Hafiz, R., & Saifuzzaman, M. (2020). Solvingonion market instability by forecasting onion price using machine learning approach. 2020 International Conference on Computational Performance Evaluation (ComPE), 777-
- Heddam, S. (2016). Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA. Journal of Environment Science Pollution Reserch, 23, 17210-17225. https://doi.org/10.1007/s11356-016-6905-9
- Hooshyaripor, F., Tahershamsi, A., & Behzadian, K. (2015). Estimation of peak outflow in dam failure using neural network approach under uncertainty analysis. Journal of Water Resources, 42(5), 721-734. https://doi.org/10.1134/S0097807815050085
- Hornik, K., Stinchombe, M., & White, H. (1989). Multi-layer feed forward networks are universal approximations. Journal of Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Jahed Armaghani, D., Tonnizam Mohamad, E., Narayanasamy, M.S., Narita, N., & Yagiz, S. (2017). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Journal of Tunnelling and Underground Space Technology, 63, 29-43. http://dx.doi.org/10.1016/j.tust.2016.12.009
- Johns, J.M., & Burkes, D. (2017). Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys. Journal of Nuclear Materials, 490, 155-166. http://dx.doi.org/10.1016/j.jnucmat.2017.03.050
- Kantanantha, N., Serban, N., & Griffin, P. (2010). Yield and price forecasting for stochastic crop decision planning. Journal of Agricultural, Biological, and Environmental Statistics, 15(3), 362-380.
- Karimi, H., & Yousefi, (2012). Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in Nanofluids. Journal of Fluid Phase Equilibria, 336, 79-83.
- Kartheeswaran, S., & Christopher Durairaj, D.D. (2017). A data-parallelism approach for PSO-ANN based medical image reconstruction on a multi-core system. Informatics in Medicine Unlocked 8, 1-11. http://dx.doi.org/10.1016/j.imu.2017.05.001
- Khandelwal, M., Mahdiyar, , Jahed Armaghani, D., Singh, T.N., Fahimifar, A., & Shirani Faradonbeh, R. (2017). An expert system based on hybrid ICA-ANN technique to estimate macerals contents of Indian coals. Journal of Environment Earth Science, 76, 399. https://doi.org/10.1007/s12665-017-6726-2
- Kisi, O., Alizamir, M., & Zounemat-Kermani, M. (2017). Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Journal of Natural Hazards, 87, 367-381. https://doi.org/10.1007/s11069-017-2767-9
- Lazzus, J.A. (2011). Autoignition temperature prediction using an artificial neural network with particle swarm optimization. International Journal of Thermophys, 32, 957-973. https://doi.org/10.1007/s10765-011-0956-4
- Mohamed, M.M., & Al-Mualla, A.A. (2010). Water demand forecasting in umm Al-Quwain (UAE) using the IWR-MAIN specify forecasting model. Journal of Water Resource Management, 24, 4093-4120.
- Mohammadi Ghahdarijani, A., Hormozi, F., & Haghighi Asl, A. (2017). Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network. Journal of International Communications in Heat and Mass Transfer, 84, 11-19. http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.03.014
- Mollaiy-Berneti, Sh. (2015). Developing energy forecasting model using hybrid artificial intelligence method, Journal of Central South University, 22, 3026-3032. https://doi.org/10.1007/s11771-015 2839-5
- Nazlioglu, S. (2011). World oil and agricultural commodity prices: Evidence from nonlinear causality. Journal of Energy Policy, 39, 2935-2943.
- Nazlioglu, S., & Soytas, U. (2011). World oil prices and agricultural commodity prices: Evidence from an emerging market. Journal of Energy Economics, 33, 488-496.
- No, S.Ch., & Salassi, M.E. (2009). A sequential rationality test of USDA preliminary price estimates for selected program crops: rice, soybeans, and wheat. Journal of International Advances Economic Research, 15, 470-482.
- Nosratabadi, S., Szell. K., Beszedes, B., Imre, F., Ardabili, S., & Mosavi, A. (2020). Hybrid machine learning models for crop yield prediction. Journal of Computer Science, Neural and Evolutionary Computing, 1-5.
- Obe, O.O., & Shangodoyin, D.K. (2016). Artificial neural network based model for forecasting sugar cane production. Journal of Computer Science, 6(4), 439-445.
- Pannakkong, W., Huynh, V., & Sriboonchitta, S. (2016). ARIMA versus artificial neural network for Thailand’s Cassava starch export forecasting. International Publishing Switzerland 2016. Studies in Computational Intelligence, 622, 255-277. https://doi.org/10.1007/978-3-319-27284-9_16
- Pham Dieu, B.Th., Bui, , Prakash, I., & Dholakia, M.B. (2017). Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Journal of Catena, 149, 52-63. http://dx.doi.org/10.1016/j.catena.2016.09.007
- Pokterng, S., & Kengpol, A. (2007). The forecasting of durian production quantity for consumption in domestic and international markets. KMUTNB: International Journal of Applied Science Technoloy, 3(3), 7-18.
- Raflesia, S.P., Taufiqurrahman, , Iriyani, S., & Lestarini, D. (2021). Agricultural commodity price forecasting using PSO-RBF neural network for farmers exchange rate improvement in Indonesia. Indonesian Journal of Electrical Engineering and Informatics, 9(3), 784-792.
- Raikar, R.V., Wang, Ch. Y., Shih, H., & Hong, J. (2016). Prediction of contraction scour using ANN and GA. Journal of Flow Measurement and Instrumentation, 50, 26-34. http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.006
- Rapach, D.E., & Strauss, J.K. (2009). Differences in housing price forecastability across US states. International Journal of Forecasting, 25, 351-372. https://doi.org/10.1016/j.ijforecast.2009.01.009
- Sangwan, K.S., Saxena, , & Kanta, G. (2015). Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Journal of Procedia CIRP, 29, 305-310. http://creativecommons.org/licenses/by-nc-nd/4.0/
- Shahwan, T., & Odening, M. (2007). Forecasting agricultural commodity prices using hybrid neural networks. Journal of Computational Intelligence in Economics and Finance, Berlin, 63-74.
- Shao, Y.E., & Dai, J.T. (2018). Integrated feature selection of ARIMA with computational intelligence approaches for food crop price prediction. Complexity.
- Shojaie, A.A., Dolatshahi Zand, A., & Vafaie, Sh. (2016). Calculating production by using short term demand forecasting models: a case study of fuel supply system. Journal of Evolving Systems. https://doi.org/10.1007/s12530-016-9173-5
- Stock, J.H., & Watson, W.M. (2004). Combination forecasts of output growth in a seven-country data set. Journal of Forecasting, 23, 405-430. https://doi.org/10.1002/for.928
- Tian, F., Yang, K., & Chen, L. (2017). Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity. International Journal of Forecasting, 33, 132-152. http://dx.doi.org/10.1016/j.ijforecast.2016.08.002
- Ticlavilca, A.M., Feuz, D.M., & McKee, M. (2010). Forecasting agricultural commodity prices using multivariate Bayesian machine learning regression. The NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management St. Louis, Missouri, April 19-20, 2010.
- Timmer, C.P. (2014). Food Security, Market Processes, and the Role of Government Policy, Encyclopedia of Agriculture and Food Systems. Elsevier Ltd. https://doi.org/10.1016/B978-0-444-52512-3.00033-4
- Tomek, W.G., & Kaiser, M. (2014). Price variation through time. Cornell University Press. http://www.jstor.org/stable/10.7591/j.ctt5hh0j8.13
- Wang, B., Liu, P., Chao, Z., Junmei, W., Chen, W., Cao, N., O’Hare, G.M.P., & Wen, F. (2018). Research on hybrid model of garlic short-term price forecasting based on big data. Journal of Computers, Materials and Continua (CMC), 57(2), 283-296.
- Weng, Y., Wang, X., Hua, , Wang, H., Kang, M., & Wang, F.Y. (2019). Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler. Journal of IEEE Transactions on Computational Social Systems, 6(3), 547-553.
- Wihartiko, F.D., Nurdiati, S., Buono, A., & Santosa, E. (2021). Agricultural price prediction models: a systematic literature review. International Conference on Industrial Engineering and Operations Management Singapore, March 7-11: 2927-2934.
- Wu, H., Wu, H., Zhu, M., Chen, , & Chen, W. (2017). A new method of large‑scale short‑term forecasting of agricultural commodity prices: illustrated by the case of agricultural markets in Beijing. Journal of Big Data, 4, 1. https://doi.org/10.1186/s40537-016-0062-3
- Xiong, T., Li, Ch., Bao, Y., Hu, , & Zhang, L. (2015). A combination method for interval forecasting of agricultural commodity futures prices. Journal of Knowledge-Based Systems, 77, 92-102.
- Yang, Y., Chen, Y., Wang, Y., Li, C., & Li, L. (2016). Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting. Journal of Applied Soft Computing, 49, 663-675. http://dx.doi.org/10.1016/j.asoc.2016.07.053
- Ye, L., Li, Y., Liu, Y., Qin, , & Liang, W. (2014). Research on the optimal combination forecasting model for vegetable price in Hainan. Proceedings of 2013 World Agricultural Outlook Conference, Springer-Verlag Berlin Heidelberg 2014.
- Zou, H., Xia, G., Yang, F., & Wang, (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Journal of Neuro computing, 70(16), 2913–2923.
|