- Abedi, Z., Saber, M., Vojoudi, S., Mahdavi, V., & Parsaeyan, E. (2014). Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science, 14, 30. https://doi.org/10.1093/jis/14.1.30
- Aghaali, N., Ghadamyari, M., Hosseininaveh, V., & Saberi Riseh, N. (2013). Protease inhibitor from the crude extract of plant seeds affects the digestive proteases in Hyphantria cunea (Lep.: Arctiidae). Journal of Plant Protection Research, 53(4), 338-346. https://doi.org/10.2478/jppr-2013-0051
- Ali, K., Sagheer, M., ul Hasan, M., Rashid, A. & Shahid, M. (2021). Bioactivity of medicinal plant extracts as toxicants and enzyme inhibitors against insect pests of stored commodities. Journal of Crop Protection, 10(1), 95-109. https://doi.org/20.1001.1.22519041.2021.10.1.11.5
- Allahverdizadeh, N.M., & Mohammadi, D. (2016). Bioactivity of Marrubium vulgare and Achillea millefolium leaf extracts on potato tuber moth Phthorimaea operculella Munis Entomology and Zoology, 11(1), 114-122.
- Alvarez, J.M., Dotseth, E., & Nolte, P. (2005). Potato tuber worm: a threat for Idaho potatoes. University of Idaho Experiment Station Bulletine, CIS1125 1-4.
- Alves, T.J.S., Cruz, G.S., Wanderley‐Teixeira, V., Teixeira, A.A.C., Oliveira, J.V., Correia, A.A., Câmara, A.A.G., & Cunha, F.M. (2013). Effects of Piper hispidinervum on spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotechnic and Histochemistry, 88, 1–11. https://doi.org/13109/10520295.2013.837509
- Bernfeld, P. (1955) Amylase α and β. Methods in Enzymology, 1, 149-158. https://doi.org/10.1016/0076-6879(55)01021-5
- Candido, L.P., Cavalcanti, M.T., & Beserra, E.B. (2013). Bioactivity of plant extracts on the larval and pupal stages of Aedes aegypti (Diptera, Culicidea). Revista da Sociedade Brasileira de Medicina Tropical, 46(4), 420-425. https://org/10.1590/0037-8682-0118-2013
- Capinera, J.L. (2020). Handbook of vegetable pests. Academic Press, New York.
- Da Lage, J-L. (2018). The amylases of insects. International Journal of Insect Science, 10, 1–14. https://org/10.1177/1179543318804783
- de França, S.M., Breda, M.O., Barbosa, D.R.S., Araujo, A.M.N., & Guedes, C.A. (2017). The sublethal effects of insecticides in insects. In: Shields, V.D.C. (Ed.), Biological Control of Pest and Vector Insects, Intech Open. https://doi.org/10.5772/66461
- Dekebo, A., Aryal, S., & Jung, C. (2019). Olfactory responses of adult potato tuber moth, Phthorimaea operculella (Zeller) measured by attraction relative to the tomato leaf volatiles. Journal of Asia-Pacific Entomology, 22, 611–618. https://org/10.1016/j.aspen.2019.04.007
- Dirar, A.I., Alsaadi, D.H.M., Wada, M., Mohamed, M.A., Watanabe, T., & Devkota, H.P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261-267. https://org/10.3390/agriculture12111820
- Dogramaci, M., & Tingey, W. (2008). Comparison of insecticide resistance in a North American field population and a laboratory colony of potato tuber worm (Lepidoptera: Gelechiidae). Journal of Pest Science, 81, 17-22. https://doi.org/10.1007/s10340-007-0178-5
- Dolores Ibáñez, M., Sanchez-Ballester, N.M., & Amparo Blázquez, M. (2020). Encapsulated limonene: a pleasant lemon-like aroma with promising application in the agri-food industry. A review. Molecules, 25, 1-20. https://org/10.3390/molecules25112598
- El-kady, H. (2011). Insecticide resistance in potato tuber moth Phthorimaea Operculella Zeller in Egypt. Journal of American Science, 7(10), 263-266.
- El-Wakeil, N.E. (2013). Botanical pesticides and their mode of action. Gesunde Pflanzen, 65, 125–149. https://org/10.1007/s10343-013-0308-3
- Fouad Sharaby, A.M., Gesraha, M.A., & Baker Fallatah, S.A. (2019). Integration of some biopesticides against potato tuber moth, Phthorimaea operculella (Zell.), during storage with reference to histopathological changes detected by a transmission electron microscope in the endocrine system. Bulletin of the National Research Centre, 43, 1-16. https://org/10.1186/s42269-019-0163-1
- Gujar, G.T., Kalia, V., Kumari, A., & Prasad, T.V. (2004). Potentiation of insecticidal activity of Bacillus thuringiensis kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hübner). Indian Journal of Experimental Biology, 42, 157-163.
- Handa, S.S., Singh Khanuja, S.P., Longo, G., & Rakesh, D.D. (2008). Extraction technologies for medicinal and aromatic plants. International center for science and high technology, 260 P.
- Hatami, A., Mohammadi, D., & Eivazian Kary, N. (2022). Comparing oral toxicity of Apium graveolens and Falcaria vulgaris extracts with Bt against Phthorimaea operculella (Zeller). Journal of Applied Research in Plant Protection, 11(3), 17-29. (In Persian with English abstract). https://doi.org/10.22034/ARPP.2022.15186
- Hussain Shah, T. (2017). Plant nutrients and insect’s development. International Journal of Entomology Research, 2(6), 54-57.
- Ibrahim, M.A., Kainulainen, P., Aflatuni, A., Tiilikkata, K., & Holopainen, J.K. (2001). Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests. Agricultural and Food Science in Finland, 10, 243-259. https://doi.org/10.23986/afsci.5697
- Isman, M.B. (2020). Botanical insecticides in the twenty-first century–fulfilling their promise? Annual Review Entomology, 65, 233–249. https://doi.org/10.1146/annurev-ento-011019-025010
- Jung, J-M., Lee, S-G., Kim, K.H., Jeon, S.W., Jung, S., & Lee, W.H. (2019). The potential distribution of the potato tuber moth (Phthorimaea Operculella) based on climate and host availability of potato. Agronomy, 10, 12. https://doi.org/10.3390/agronomy10010012
- Karr, L.L., & Coats, J.R. (1988). Insecticidal properties of d-limonene. Journal of Pesticide Science, 13, 2287–2290. https://doi.org/10.1584/jpestics.13.287
- Khalil, A., Nawaz, H., Ghania, JB., Rehman, R., & Nadeem, F. (2015). Value added products, chemical constituents and medicinal uses of celery (Apium graveolens) – a review. International Journal of Chemical and Biochemical Sciences, 8, 40-48.
- Khan, S., Nazir Uddin, M., Rizwan, M., Khan, W., Farooq, M., Shah, A., Subhan, F., Aziz, F., Ur Rahman, K., Khan, A., Ali, S., & Muhammad, M. (2020). Mechanism of insecticide resistance in insects/pests. Polish Journal of Environmental Studies, 29(3), 2023–2030. https://doi.org/10.15244/pjoes/108513
- Khorrami, F., & Soleymanzade, A. (2021). Efficacy of some chemical insecticides and plant extracts combined with Bacillus thuringiensis against Phthorimaea operculella. Acta phytopathologica et entomologica Hungarica, 56(2), 169-179. https://doi.org/10.1556/038.2021.00119
- Konecka,, Kaznowski, A., Grzesiek, W., Nowicki, P., Czarniewska, E., & Baranek, J. (2020). Synergistic interaction between carvacrol and Bacillus thuringiensis crystalline proteins against Cydia pomonella and Spodoptera exigua. BioControl, 65, 447–460. https://doi.org/10.1007/s10526-020-10011-4
- Kooti, W., Ali-Akbari, S., Asadi-Samani, M., Ghadery, H., & Ashtary-Larky, D. (2014). A review on medicinal plant of Apium graveolens. Advanced Herbal Medicine, 1(1), 48-59.
- Koppenhöfer, A.M., & Kaya, H.K. (1997). Synergism of imidacloprid and an entomopathogenic nematode: a novel approach to white grub (Coleoptera: Scarabaeidae) control in turfgrass. Journal of Economic Entomology, 91, 618–623. https://doi.org/10.1093/jee/91.3.618
- Koul, O., Walia, S., & Dhliwal, G. (2008). Essential oils as green pesticides: potential and constraints. Biopesticides International, 4(1), 63-84.
- Kuppusamy, P., Yusoff, M.M., Maniam, G.P., & Govindan, N., (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharmaceutical Journal, 24(4), 473-84. https://doi.org/10.1016/j.jsps.2014.11.013
- Le, A.V., Parks, S.E., Nguyen, M.H., & Roach, P.D. (2018). Effect of solvents and extraction methods on recovery of bioactive compounds from defatted gac (Momordica cochinchinensis) seeds. Separations, 5, 39. https://doi.org/10.3390/separations5030039
- Lee, C.Y. (2000). Sublethal effects of insecticide on longevity, fecundity, and behavior of insect pests: a review. Bioscience Journal, 11, 107–112. https://doi.org/10.5772/66461
- Lezoul, N.H., Belkadi, M., Habibi, F., & Guillén, F. (2020). Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25, 4672. https://doi.org/10.3390/molecules25204672
- Madasamy,, Sahayaraj, K., Sayed, S.M., Al-Shuraym, L.A., Selvaraj, P., El-Arnaouty, S.A. & Madasamy, K. (2023). Insecticidal mechanism of botanical crude extracts and their silver nanoliquids on Phenacoccus solenopsis. Toxics, 11, 305. https://doi.org/10.3390/toxics11040305
- Magholi Fard, Z., Hesami, S., Marzban, R., & Salehi Jouzani, G. (2020). Individual and combined biological effects of Bacillus thuringiensis and multicapsid Nucleopolyhedrovirus on the biological stages of egyptian cotton leafworm, Spodoptera littoralis (B.) (Lep.: Noctuidae). Journal of Agricultural Science Technology, 22(2), 465-476. https://doi.org/20.1001.1.16807073.2020.22.2.13.1
- Malik, K., & Riasat, R. (2014). Study of combined effect of locally isolated Bacillus thuringiensis and turmeric powder on red flour beetle (Tribolium castaneum). International Journal of Current Microbiology Applied Science, 3, 760–77. https://doi.org/10.5829/idosi.aje.2015.8.1.9244
- Mehrabadi, M., Bandani, A.R., & Alizadeh, H. (2012). Inhibitory activity of proteinaceous alpha- amylase inhibitors from Triticale seeds against Eurygaster integriceps salivary alpha-amylases: Interaction of the inhibitors and the insect digestive enzymes. Pesticide Biochemistry and Physiology, 102, 220-228. https://doi.org/10.1016/j.pestbp.2012.01.008
- Mesén-Porras, E., Dahdouh-Cabia, S., Jimenez-Quiros,c., Mora-Castro, R., Rodríguez, C., & Pinto-Tomás, A. (2020).Soybean protease inhibitors increase Bacillus thuringiensis Israelensis toxicity against Hypothenemus hampei. Agronomía Mesoamericana, 31(2),461-478. https://doi.org/10.15517/am.v31i2.36573
- Mohammadi, D., Eivazian Kary, N., & Sharifi Azar, Z. (2020). Enhancing Efficiency of Bacillus thuringiensis by Leaf Extract of Cupressus arizonica against Spodoptera exigua (Lep.: Noctuidae). Journal of Applied Research in Plant Protection, 9(1), 89-105. (In Persian with English abstract)
- Nazarpour, L., Yarahmadi, F., Saber, M., & Rajabpour, A. (2016). Short and long term effects of some bio-insecticides on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and its coexisting generalist predators in tomato fields. Journal of Crop Protection, 5(3), 331-342. https://doi.org/20.1001.1.22519041.2016.5.3.7.0
- Ngegba, P.M., Cui, G., Khalid, M.Z., & Zhong, G. (2022). Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12(5), 600. https://doi.org/10.3390/agriculture12050600
- Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z., & George Kamita, S. (2016). Individual and combined effects of Bacillus thuringiensis and Azadirachtin on Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Journal of Insect Science, 16(1), 95. https://doi.org/10.1093/jisesa/iew086. PMID: 27638953
- Opender, K., & Walia, S. (2009). Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4, 1-30. https://doi.org/10.1079/PAVSNNR20094049
- Plata-Rueda, A., Quintero, H.A., Serrão, J.E., & Martínez, L.C. (2020). Insecticidal activity of Bacillus thuringiensis strains on the nettle caterpillar, Euprosterna elaeasa (Lepidoptera: Limacodidae). Insects, 11, 310. https://doi.org/10.3390/insects11050310
- Qi, X.-J., Feng, Y.X., Pang, X., & Du, S.S. (2021). Insecticidal and repellent activities of essential oils from seed and root of celery (Apium graveolens) against three stored product insects. Journal of Essential Oil Bearing Plants, 24(5), 1169-1179, https://doi.org/10.1080/0972060X.2021.1981159
- Rajguru, M., & Sharma, A.N. (2012). Comparative efficacy of plant extracts alone and in combination with Bacillus thuringiensis sub sp. kurstaki against Spodoptera litura larvae. Journal of Biopesticides, 5(1), 81-86.
- Rajguru, M., Sharma, A., & Banerjee, S. (2011). Assessment of plant extracts fortified with Bacillus thuringiensis (Bacillales: Bacillaceae) for management of Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, 31(1-2), 92-97. https://doi.org/10.1017/S174275841100018X
- Reddy, D.S., & Chowdary, N.M. (2021). Botanical biopesticide combination concept- a viable option for pest management in organic farming. Egyptian Journal of Biological Pest Control, 31, 1-10. https://doi.org/10.1186/s41938-021-00366-w
- Rondon, S.I. (2010). The potato tuberworm: a literature review of its biology, ecology, and control. American Journal of Potato Research, 87, 149–166. https://doi.org/10.1007/s12230-009-9123-x
- Rożek, E., Nurzyńska-Wierdak, R., Sałata, A., & Gumiela P. (2016). The chemical composition of the essential oil of leaf celery (Apium graveolensl. var. Secalinum Alef.) under the plants’ irrigation and harvesting method. Acta Scientiarum Polonorum Hortorum Cultus, 15(1), 147-157.
- Sánchez–Yáñez, J.M., Rico, J.L., & Ulíbarri, G. (2022). Bacillus thuringiensis (Bt) is more than a special agent for biological control of pests. Journal of Applied Biotechnology and Bioengineering, 9(2), 33‒39. https://doi.org/15406/jabb.2022.09.00282
- Schoor, T.V., Kelly, E.T., Tam, N., & Michael Attardo, G. (2020). Impacts of dietary nutritional composition on larval development and adult body composition in the yellow fever mosquito (Aedes aegypti). Insects, 11, 535. https://doi.org/10.3390/insects11080535
- Senthil-Nathan, S., Kandaswamy, K., Kim, S., & Kadarkarai, M. (2006). The toxicity and behavioural effects of neem limonoids on Cnaphalocrocis medinalis (Guenée) the rice leaf-folder. Chemosphere, 62, 1381-7. https://doi.org/10.1016/j.chemosphere.2005.07.051
- Silva, C.T.S., Wanderley‐Teixeira, V., Cunha, F.M., Oliveira, J.V., Dutra, K.A., Navarro, D.M.A.F., & Teixeira, A.A.C. (2016). Biochemical parameters of Spodoptera frugiperda treated with citronella oil (Cymbopogon wintwrianus Jowitt ex Bor) and its influence on reproduction. Acta Histochemistry, 118, 347–352. https://doi.org/10.1016/j.acthis.2016.03.004
- Singh Rattan, R. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29(9), 913-920. https://doi.org/1016/j.cropro.2010.05.008
- Stark, J.D., & Banks, J.E. (2003). Population‐level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48, 505–519. https://doi.org/10.1146/annurev.ento.48.091801.112621
- Sun, J., Feng, Y., Wang, Y., Li, J., Zou, K., Liu, H., Hu, Y., Xue, Y., Yang, L., Shushan, Du, S., & Wu, Y. (2020). Investigation of pesticidal effects of Peucedanum terebinthinaceum essential oil on three stored-product insects. Records of Natural Products, 14(3), 177-189.
- Talaei-Hassanloui, R., Bakhshaei, R., Hosseininaveh, V., & Khorramnezhad, A. (2014). Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis Kurstaki. Frontiers in Physiology, 4, 406. https://doi.org/10.3389/fphys.2013.00406
- Theochari, I., Giatropoulos, A., Papadimitriou, V., Karras, V., Balatsos, G., Papachristos, D., & Michaelakis, A. (2020). Physicochemical characteristics of four limonene-based nanoemulsions and their larvicidal properties against two mosquito species, Aedes albopictus and Culex pipiens Insects, 11, 1-12. https://doi.org/10.3390/insects11110740
- Vilani, A., Lozano, E.R., Potrich, M., Angeli, A., Luis, F., Martins, C.M.F., Dall Agnol de Lima, J., & de Gouvea, A. (2017). Activity of plant aqueous extracts on Bacillus thuringiensis and their interactions on Anticarsia gemmatalis (Lepidoptera: Erebinae). Semina: Ciências Agrárias, 38(2), 1051-1057. https://doi.org/10.5433/1679-0359.2017v38n2p1051
- Visweshwar, R., Akbar, S.M.D., Sharma, H.C., & Sreeramulu, K. (2018). Influence of Bacillus thuringiensis toxins on the development and midgut proteases in different larval instars of Helicoverpa armigera. Indian Journal of Entomology, 80(3), 960-970.
- Yang, J., Quan, Y., Sivaprasath, P., Shabbir, M.Z., Wang, Z., Ferré, J., & He, K. (2018). Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker). Toxins, (Basel), 4;10(11): 454. https://doi.org/10.3390/toxins10110454
- Yazdani, E., JalaliSendia, J., Zibaeea, A., & Ghadamyari, M. (2010). Enzymatic properties of α-amylase in the midgut and the salivary glands of mulberry moth, Glyphodespyloalis Walker (Lepidoptera: Pyralidae). Comptes Rendus Biologies, 333(1), 17-22.
- Yildirim, E., Emsen, B., & Kordali, S. (2013). Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Applied Botany and Food Quality, 86, 198-204.
- Zhang, C., Yu, J., Tu, Q., Yan, F., Hu, Z., Zhang, Y., & Song, C. (2022). Antioxidant capacities and enzymatic inhibitory effects of different solvent fractions and major flavones from celery seeds produced in different geographic areas in China. Antioxidants, 11, 1542. https://doi.org/10.3390/antiox11081542
- Zhu, F., Lavine, L., O’Neal, S., Lavine, M., Foss, C., & Walsh, D. (2016). Insecticide resistance and management strategies in urban ecosystems. Insects, 7, 2. https://doi.org/10.3390/insects7010002
|