- Abdolshah, M. (2014). A review of resource-constrained project scheduling problems (RCPSP) approaches and solutions. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 5(4), 253-286.
- Abdi, A. E. (2009). Planning and scheduling of agricultural mechanization projects with Gart networks.
- Dumond, J., & Mabert, V. A. (1988). Evaluating project scheduling and due date assignment procedures: an experimental analysis. Management Science, 34(1), 101-118. https://doi.org/10.1287/mnsc.34.1.101
- Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). A genetic algorithm (ga) based load balancing strategy for cloud computing. Procedia Technology, 10, 340-347. https://doi.org/10.1016/j.protcy.2013.12.369
- Fekri, R., Amiri, M., Sajjad, R., & Golestaneh, R. (2016). Optimization of bank portfolio investment decision considering resistive economy. Journal of Money and Economy, 11(4), 375-400.
- Gonçalves, G., Marques, P. A., Granadeiro, C. M., Nogueira, H. I., Singh, M. K., & Gracio, J. (2009). Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 21(20), 4796-4802. https://doi.org/10.1021/cm901052s
- Hourzadeh. (2013). Modeling and planning of resource allocation and cost-time balance of agricultural mechanization projects with PERT networks.
- Hussain, K., Mohd Salleh, M. N., Cheng, S., & Shi, Y. (2019). Metaheuristic research: a comprehensive survey. Artificial Intelligence Review, 52, 2191-2233. https://doi.org/10.1007/s10462-017-9605-z
- Küçüksayacıgil, F. (2014). Use of genetic algorithms in multi-objective multi-project resource constrained project scheduling.
- Larrañaga, P. (2002). A Review on Estimation of Distribution Algorithms. In: Larrañaga, P., Lozano, J.A. (eds) Estimation of Distribution Algorithms. Genetic Algorithms and Evolutionary Computation, 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1539-5_3
- Mirjalili, S. (2019). Evolutionary algorithms and neural networks. Studies in computational intelligence, Springer.
- Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2016). An adaptive memory programming framework for the resource-constrained project scheduling problem. International Journal of Production Research, 54(16), 4938-4956. https://doi.org/10.1080/00207543.2016.1145814
- Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702-713. https://doi.org/10.1109/tevc.2008.919004
- Vartouni, A. M., & Khanli, L. M. (2014). A hybrid genetic algorithm and fuzzy set applied to multi-mode resource-constrained project scheduling problem. Journal of Intelligent & Fuzzy Systems, 26(3), 1103-1112. https://doi.org/10.3233/ifs-120747
- Wang, H., Lin, D., & Li, M. Q. (2005). A competitive genetic algorithm for resource-constrained project scheduling problem. 2005 International Conference on Machine Learning and Cybernetics, IEEE. https://doi.org/10.1109/icmlc.2005.1527446
- Wang, F., Zhang, H., Li, K., Lin, Z., Yang, J., & Shen, X. L. (2018). A hybrid particle swarm optimization algorithm using adaptive learning strategy. Information Sciences, 436, 162-177. https://doi.org/10.1016/j.ins.2018.01.027
- Xing, B., & Gao, W. J. (2014). Innovative computational intelligence: a rough guide to 134 clever algorithms, Springer. https://doi.org/10.1007/978-3-319-03404-1
|