- Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell’Amico, E., ... & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57(5), 401-412. https://doi.org/10.1016/j.chemosphere.2004.06.013
- Christopher, S., Hein, P., Marsden, J., & Shurleff, A.S. (1988). Evaluation of methods 3540 (soxhlet) and 3550 (Sonication) for evaluation of appendix IX analyses from solid samples. S-CUBED, Report for EPA contract 68-03-33-75, work assignment No. 03, Document No (pp. 523-546). SSS.
- Cox, J.F., Blackstone, J.H., & Schleier, J.G. (2003). Managing operations: A focus on excellence. North River Press.
- Deaker, R., Kecskés, M.L., Rose, M.T., Amprayn, K., Ganisan, K., Tran, T.K.C., Vu, T.N., Phan, T.C., Nguyen, T.H., & Kennedy, I.R. (2011). Practical methods for the quality control of inoculant biofertilisers. Australian Centre for International Agricultural Research (ACIAR). 101 pp
- Dos Santos, H. F., Cury, J.C., Do Carmo, F.L., Dos Santos, A.L., Tiedje, J., van Elsas, J.D., ... & Peixoto, R.S. (2011). Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PloS one, 6(3), e16943. https://doi.org/10.1371/journal.pone.0016943
- Ebrahimi, M., Falah, M., & Sarikhani, M.R., (2013). Isolation and identification of some bacteria that decompose petroleum substances from soil contaminated with petroleum substances and checking their growth ability in the presence of gasoline. Water and Soil Science, 3(1), 109-121. (In Persian with English abstract)
- Gianfreda, L., Rao, M.A., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 341(1-3), 265-279. https://doi.org/10.1016/j.scitotenv.2004.10.005
- Guo, H., Yao, J., Cai, M., Qian, Y., Guo, Y., Richnow, H.H., ... & Ceccanti, B. (2012). Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere, 87(11), 1273-1280. https://doi.org/10.1016/j.chemosphere.2012.01.034
- Hui, L.I., Zhang, Y., Kravchenko, I., Hui, X.U., & Zhang, C.G. (2007). Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: a laboratory experiment. Journal of Environmental Sciences, 19(8), 1003-1013. https://doi.org/10.1016/S1001-0742(07)60163-6
- Klamerus-Iwan, A., Błońska, E., Lasota, J., Kalandyk, A., & Waligórski, P. (2015). Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water, Air, & Soil Pollution, 226, 1-9. https://doi.org/10.1007/s11270-015-2649-2
- Labud, V., Garcia, C., & Hernandez, T. (2007). Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere, 66(10), 1863-1871. https://doi.org/10.1016/j.chemosphere.2006.08.021
- Lee, S.H., Oh, B.I., & Kim, J.G. (2008). Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity. Bioresource Technology, 99(7), 2578-2587. https://doi.org/10.1016/j.biortech.2007.04.039
- Liang, Y., Zhang, X., Zhou, J., & Li, G. (2015). Long‐term oil contamination increases deterministic assembly processes in soil microbes. Ecological Applications, 25(5), 1235-1243. https://doi.org/10.1890/14-1672.1
- Liao, J., Wang, J., Jiang, D., Wang, M.C., & Huang, Y. (2015). Long-term oil contamination causes similar changes in microbial communities of two distinct soils. Applied Microbiology and Biotechnology, 99, 10299-10310. https://doi.org/10.1007/s00253-015-6880-y
- Lipińska, A., Kucharski, J., & Wyszkowska, J. (2013). Urease activity in soil contaminated with polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 22(5), 1393-1400.
- Margesin, R., Hämmerle, M., & Tscherko, D. (2007). Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microbial Ecology, 53, 259-269. https://doi.org/10.1007/s00248-006-9136-7
- Martin, A.E., & Reeve, R. (1955). A rapid manometeic method for determining soil carbonate. Soil Science, 79(3), 187-198.
- Moradi, S. H., Sarikhani, M. R., & Alliasgharzad, N. (2019). Isolation of endophytic bacteria from grasses root and assessing phosphate solubilization, potassium releasing and auxin production abilities of isolated bacteria. Biological Journal of Microorganism, 36(2020), 1-13. https://doi.org/10.22108/bjm.2019.117674.1207
- Moreno, B., Nogales, R., Macci, C., Masciandaro, G., & Benitez, E. (2011). Microbial eco-physiological profiles to estimate the biological restoration of a trichloroethylene-contaminated soil. Ecological Indicators 11(6), 1563-1571. https://doi.org/10.1016/j.ecolind.2011.03.026
- Nie, M., Zhang, X.D., Wang, J.Q., Jiang, L.F., Yang, J., Quan, Z.X., ... & Li, B. (2009). Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biology and Biochemistry, 41(12), 2535-2542. https://doi.org/10.1016/ j.soilbio.2009.09.012
- Phillips, L.A., Greer, C.W., Farrell, R.E., & Germida, J.J. (2009). Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Applied Soil Ecology, 42(1), 9-17. https://doi.org/10.1016/ j.apsoil.2009.01.002
- Rao, M.A., Scelza, R., Acevedo, F., Diez, M. C., & Gianfreda, L. (2014). Enzymes as useful tools for environmental purposes. Chemosphere 107: 145-162. https://doi.org/10.1016/j.chemosphere.2013.12.059.
- Rowell, D.L. (1994). Soil Science: Methods and Applications. Longman, UK.
- Saadoun, I., Mohammad, M.J., Hameed, K.M., & Shawaqfah, M.A. (2008). Microbial populations of crude oil spill polluted soils at the Jordan-Iraq desert (the Badia region). Brazilian Journal of Microbiology, 39, 453-456.
- Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (Eds.). (2012). Methods in soil biology. Springer Science & Business Media.
- Sutton, N.B., Maphosa, F., Morillo, J.A., Abu Al-Soud, W., Langenhoff, A.A., Grotenhuis, T., Rijnaarts, H.H., & Smidt, H. (2013). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79(2): 619–630. https://doi.org/10.1128/AEM.02747-12
- Tabatabai, M.A. (1994). Soil enzymes. Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5, 775-833. https://doi.org/10.2136/sssabookser5.2.c37
- Trasar-Cepeda, C., Leiros, M.C., Seoane, S., & Gil-Sotres, F. (2000). Limitations of soil enzymes as indicators of soil pollution. Soil Biology and Biochemistry, 32(13), 1867-1875. https://doi.org/10.1016/S0038-0717(00)00160-7
- Vincent, A.O., Felix, E., Weltime, M.O., Ize-iyamu, O.K., & Daniel, E.E. (2011). Microbial degradation and its kinetics on crude oil polluted soil. Research Journal of Chemical Sciences.
- Wyszkowska, J., Kucharski, M., & Kucharski, J. (2006). Application of the activity of soil enzymes in the evaluation of soil contamination by Diesel oil. Polish Journal of Environmental Studies, 15(3), 501-506.
- Xiao, K.Q., Li, L.G., Ma, L.P., Zhang, S.Y., Bao, P., Zhang, T., & Zhu, Y.G. (2016). Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environmental Pollution, 211, 1-8. https://doi.org/10.1016/j.envpol.2015.12.023
- Xu, J.G., & Johnson, R.L. (1995). Root growth, microbial activity and phosphatase activity in oil-contaminated, remediated and uncontaminated soils planted to barley and field pea. Plant and Soil, 173(1), 3-10. https://doi.org/10.1007/BF00155512
|