Amini Dehaghi, M., & Dadkhah, A. (2012). The effect of iron and zinc fertilizers on the growth, nodulation and nitrogen fixation of chickpea under salinity stress conditions. In: Abstract Book of the the 4th Pulse Crops Symposium, February 18-19, 2012. Arak Agricultural Jahad Organization, Iran. 1-4. (In Persian)
Analin, B., Mohanan, A., Bakka, K., & Challabathula, D. (2020). Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions. Plant Physiology and Biochemistry, 154, 248-259. https://doi.org/10.1016/j.plaphy.2020.05.022
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
Chenarani, M., Safipourafshar, A., & Saeed Nematpour, F. (2014). Physiological and biochemical responses of field pea plants to ascorbic acid under salinity stress. Iranian Journal of Plant Physiology and Biochemistry, 1(1), 76-63. (In Persian with English Abstract)
Cruz-Castillo, J.G., Ganeshanandam, S., MacKay, B.R., Lawes, G.S., Lawoko, C.R.O., & Woolley, D.J. (1994). Applications of canonical discriminant analysis in horticultural research. HortScience, 29(10), 1115-1119. https://doi.org/10.21273/HORTSCI.29.10.1115
Dehghani Tafti, A., Mahmoudi, S., Alikhani, H., & Salehi, M. (2018). Investigating the effect of salinity stress and soil micro-organisms on the amount of absorption of mineral elements of the medicinal plant esfarzeh (Plantago ovata Forsk). Plant Production Research, 26(1), 123-140. (In Persian with English Abstract). https://doi.org/10.22069/jopp.2019.14474.2295
Dharamvir., Kumar, A., Kumar, N., & Kumar, M. (2018.) Physiological responses of chickpea ( Cicer arietinum L.) genotypes to salinity stress. International Journal of Current Microbiology and Applied Sciences, 7(11), 2380-2388. https://doi.org/10.20546/ijcmas.2018.711.269
Doraki, G.R., Zamani, G.R., & Sayyari, M.H. (2018). Effect of salt stress on yield and yield components in chickpea ( Cicer arietinum L. cv. Azad). Iranian Journal Pulses Research, 9(1), 57-68. (In Persian with English Abstract). https://doi.org/10.22067/ijpr.v9i1.53816
FAO. (2018). Food and Agriculture Organization of the United Nations. http://www.Faostate.fao.org
Farhoudi, R., & Dong, L. (2015). Investigating stress tolerance and comparing grain yield of chickpea genotypes under salinity stress conditions. Physiology of Agricultural Plants, (33), 53-68. (In Persian with English Abstract)
Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H.M., Alghamdi, S.S., & Siddique, K.H. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118, 199-217. https://doi.org/10.1016/j.plaphy.2017.06.020
Ghosh, S., Kamble, N.U., & Majee, M. (2020). A protein repairing enzyme, protein l-isoaspartyl methyltransferase is involved in salinity stress tolerance by increasing efficiency of ROS-scavenging enzymes. Environmental and Experimental Botany, 180, 104266. https://doi.org/10.1016/j.envexpbot.2020.104266
Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Wirth, S., & Egamberdieva, D. (2019). Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 26(1), 38-48. https://doi.org/10.1016/j.sjbs.2016.11.015
Hoagland, D.R. & Arnon, D.I. (1950). The water-culture method for growing plants without soil. circular (2nd Ed.). California Agricultural Experiment Station.
Kanuni, H. (2016). The current situation and future prospects of chickpea cultivation and production in the country, the 6th National Legume Conference of Iran, Khorramabad, Research and Education Center of Agriculture and Natural Resources of Lorestan province, Iran. (In Persian with English Abstract)
Kaur, R., & Prasad, K. (2021). Technological, processing and nutritional aspects of chickpea ( Cicer arietinum)-A review. Trends in Food Science and Technology, 109, 448-463. https://doi.org/10.1016/j.tifs.2021.01.044
Liu, X., Ma, D., Zhang, Z., Wang, S., Du, S., Deng, X., & Yin, L. (2019). Plant lipid remodeling in response to abiotic stresses. Environmental and Experimental Botany, 165, 174-184. https://doi.org/10.1016/j.envexpbot.2019.06.005
Muchate, N.S., Nikalje, G.C., Rajurkar, N.S., Suprasanna, P., & Nikam, T.D. (2016). Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82, 371-406. https://doi.org/10.1007/s11105-015-0939-x
Nabati, J., Kafi, M., Masoumi, A., Zare Mehrjerdi, M., Boroumand Rezazadeh, E., & Khaninejad, S. (2018). Salinity stress and some physiological relationships in kochia ( Kochia scoparia). Environmental Stresses in Crop Sciences, 11(2), 401-412. (In Persian with English Abstract). http://dx.doi.org/10.22077/escs.2017.1607.1036
Nabati, J., Goldani, M., Mohammadi, M., Mirmiran S.M., & Asadi. A. (2022a). Evaluation of response of lentil (Lens culinaris Medik.) genotypes to salinity stress under controlled conditions. Journal Soil and Plant Interactions, 12(4), 73-91. (In Persian with English Abstract)
Nabati, J., Nasiri, Z., Nezami, A., Kafi, M., & Goldani, M. (2022b). Effects of salinity stress on growth processes and survival of Desi-type chickpea genotypes in hydroponic conditions. Iranian Journal of Field Crop Science, 53(2), 29-44. (In Persian with English Abstract). https://doi.org/10.22059/ijfcs.2021.315235.654779
Nasiri, Z., Nabati, J., Nezami, A., & Kafi, M. (2021). Screening of Kabuli-type chickpea genotypes for salinity tolerance under field condition. Environmental Stresses in Crop Sciences, 14(4), 1055-1068. (In Persian with English Abstract). https://doi.org/10.22077/escs.2020.3290.1839
Nasiri, Z., Nabati, J., Nezami, A., & Kafi, M. (2023). Assessment of photosynthetic traits of kabuli-type chickpea genotypes under salinity stress. Iranian Journal of Field Crops Research, 21(2), 127-142. (In Persian with English Abstract). https://doi.org/10.22067/gsc.v0i0.80785
Petretto, G.L., Urgeghe, P.P., Massa, D., & Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141, 30-39. https://doi.org/10.1016/j.plaphy.2019.05.012
Sairam, R.K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86, 407-421.
Soni, S., Kumar, A., Sehrawat, N., Kumar, A., Kumar, N., Lata, C., & Mann, A. (2021). Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes. Saudi Journal of Biological Sciences, 28(4), 2510-2517. https://doi.org/10.1016/j.sjbs.2021.01.052
Sun, W., Zhao, H., Wang, F., Liu, Y., Yang, J., & Ji, M. (2017). Effect of salinity on nitrogen and phosphorus removal pathways in a hydroponic micro-ecosystem planted with Lythrum salicaria L. Ecological Engineering, 105, 205-210. https://doi.org/10.1016/j.ecoleng.2017.04.048
Tan, X., Tan, X., Li, E., Bai, Y., Nguyen, T.T., & Gilbert, R.G. (2021). Starch molecular fine structure is associated with protein composition in chickpea seed. Carbohydrate Polymers, 272, 118489.
Tandon, H.L.S. (1995). Methods of Analysis of Soils, Plants, Water and Fertilizers. FDCO, New Delhi.
Voet, D., Voet, J.G., & Pratt, C.W. (2001). Fundamentals of Biochemistry. New York, Wiley.
|