- Ahmadi, S., Afsharifar, A., Niazi, A., Sadeghi, M., & Izadpanah, K. )2006(. Distribution and analysis of genetic diversity of Citrus tristeza virus (CTV) isolates in Kerman Province. 17th Iranian Plant Protection Congress, 289.(In Persian with English abstract)
- Alavi, A., Khatabi, B., & Salekdeh, G.H. (2005). Comparison of biologically distinct isolates of Citrus tristeza virus from Iran using major coat protein seq uences. Australian Plant Pathology, 34(4), 577-582. https://doi.org/10.1071/AP05079
- Albiach-Martı́, M.R., Guerri, J., Cambra, M., Garnsey, S.M., & Moreno, P. (2000). Differentiation of Citrus tristeza virus isolates by serological analysis of p25 coat protein peptide maps. Journal of Virological Methods, 88(1), 25-34. https://doi.org/10.1016/s0166-0934(00)00165-8
- Albiach-Marti, M.R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, M.E., Shanker, S., Almira, E.C., Vives, M.C., Lopez, C., Guerri, J., Flores, R., Moreno, P., Garnsey, S.M., & Dawson, W.O. (2000b). Sequences of Citrus tristeza virus separated in time and space are essentially identical. Journal of Virology, 74, 6856-6865. https://doi.org/1128/jvi.74.15.6856-6865.2000
- Barzegar, A., Rahimian, H., & Hashemi Sohi, H. (2010). Comparison of the minor coat protein gene sequences of aphid-transmissible and-nontransmissible isolates of Citrus tristeza virus. Journal of General Plant Pathology, 76, 143-151. https://doi.org/1007/s10327-009-0216-7
- Barzegar, A., Sohi, H.H., & Rahimian, H. (2006). Characterization of Citrus tristeza virus isolates in northern Iran. Journal of General Plant Pathology,72, 46-51. https://doi.org/1007/s10327-005-0249-5
- Bester, R., Cook, G., & Maree, H.J. (2021). Citrus tristeza virus genotype detection using high-throughput sequencing. Viruses,13, 2-168. https://doi.org/10.3390/v13020168
- Biswas, K.K., Tarafdar, A., & Sharma, S.K. (2012). Complete genome sequence of mandarin decline Citrus tristeza virus of the northeastern Himalayan hill region of India: comparative analyses determine recombinant. Archives of Virology, 157, 579–583. https://doi.org/10.1007/s00705-011-1165-y
- Carra, A.M., Gambino, G., & Schubert, A. (2007) A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Biochemistry, 360, 318. https://doi.org/10.1016/j.ab.2006.09.022
- Cheng, X.F., Wu, X.Y., Wang, H.Z., Sun, Y.Q., Qian, Y.S., & Luo, L. (2012). High codon adaptation in Citrus tristeza virus to its citrus host. Virology Journal, 9, 113. https://doi.org/1186/1743-422X-9-113
- Coetzee, B., Freeborough, M.J., Maree, H.J., Celton, J.M., Rees, D.J.G., & Burger, J.T. (2010). Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology, 400(2), 157-163. https://doi.org/11016/j.virol.2010.01.023
- Cook, G., van Vuuren, S.P., Breytenbach, J.H., Steyn, C., Burger, J.T., & Maree, H.J. (2016). Characterization of Citrus tristeza virus single-variant sources in grapefruit in greenhouse and field trials. Plant Disease, 100(11), 2251-2256. https://doi.org/1094/PDIS-03-16-0391-RE
- Cowell, S.J., Harper, S.J., & Dawson, W.O. (2016). Some like it hot: Citrus tristeza virus strains react differently to elevated temperature. Archives of Virology, 161, 3567-3570. https://doi.org/1007/s00705-016-3083-5
- Dawson, W.O., Bar-Joseph, M., Garnsey, S.M., & Moreno, P. (2015). Citrus tristeza virus: making an ally from an enemy. Annual Review of Phytopathology,5, 137-155. https://doi.org/1146/annurev-phyto-080614-120012
- Ebrahim-Nesbat, F., & Nienhaus, F. (1978). Occurrence of Citrus tristeza virus in Iran/Auftreten von Citrus-Tristeza virus in Iran. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 308-312.
- Flores, R., Ruiz-Ruiz, S., Soler, N., Sánchez-Navarro, J., Fagoaga, C., López, C., Navarro, L., Moreno, P., & Peña, L. (2013). Citrus tristeza virus p23: a unique protein mediating key virus–host interactions. Frontiers in Microbiology,4, 98. https://doi.org/3389/fmicb.2013.00098
- Gottwald, T.R., Garnsey, S.M., & Borbón, J. (1998). Increase and patterns of spread of Citrus tristeza virus infections in Costa Rica and the Dominican Republic in the presence of the brown citrus aphid, Toxoptera citricida. Phytopathology, 88, 621-636. https://doi.org/11094/PHYTO.1998.88.7.621
- Gushchin, V.A., Karlin, D.G., Makhotenko, A.V., Khromov, A.V., Erokhina, T.N., Solovyev, A.G., Morozov, S.Y., & Agranovsky, A.A. (2017). A conserved region in the Closterovirus 1a polyprotein drives extensive remodeling of endoplasmic reticulum membranes and induces motile globules in Nicotiana benthamianaVirology, 502, 106-113. https://doi.org/10.1016/j.virol.2016.12.006
- Harper, S.J., Dawson, T.E., & Pearson, M.N. (2009). Complete genome sequences of two distinct and diverse Citrus tristeza virus isolates from New Zealand. Archives of Virolology, 154, 1505–1510.
- Harper, S.J., & Pearson, M.N. (2015). Citrus tristeza virus strains present in New Zealand and the South Pacific. Journal of Citrus Pathology, 2, 1. https://doi.org/1007/s00705-009-0456-z
- Harper, S.J. (2013). Citrus tristeza virus: evolution of complex and varied genotypic groups. Frontiers in Microbiology, 4, 93. https://doi.org/10.3389/fmicb.2013.00093
- Herrera-Isidrón, L., Ochoa-Sánchez, J.C., Rivera-Bustamante, R., & Martinez- Soríano, J.P. (2009). Sequence diversity on four ORFs of Citrus tristeza virus correlates with pathogenicity. Virology Journal, 6, 116. https://doi.org/10.1186/1743-422X-6-116
- Huang, Y.W., Hu, C.C., Liou, M.R., Chang, B.Y., Tsai, C.H., & Meng, M. (2012). Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLoS Pathology, 8, e1002726. https://doi.org/10.1371/journal.ppat.1002726
- Iftikhar, Y., Abbas, M., Mubeen, M., Zafar-ul-Hye, M., Bakhtawar, F., Bashir, S., Sajid, A., & Shabbir, M.A., (2021). Overview of strain characterization in relation to serological and molecular detection of Citrus tristeza Closterovirus. Phyton, 90(4), 1063. https://doi.org/10.32604/phyton.2021.015508
- Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M.C., Matsumoto Yokoyama, E., & Mitsuhara, I. (2010). In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Moecular Cell, 39, 282–291. https://doi.org/1016/j.molcel.2010.05.014
- Jo, Y., Choi, H., Kim, S.M., Kim, S.L., Lee, B.C., & Cho, W.K. (2017). The pepper virome: natural co-infection of diverse viruses and their quasispecies. BMC Genomics,1, 1-12. https://doi.org/1186/s12864-017-3838-8
- Jo, Y., Choi, H., Kim, S.M., Kim, S.L., Lee, B.C., & Cho, W.K. (2016). Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus. BMC Genomics,17, 1,1-12. https://doi.org/1186/s12864-016-2994-6
- Kashif, M., Pietilä, S., Artola, K., Jones, R.A.C., Tugume, A.K., Mäkinen, V., & Valkonen, J.P.T. (2012). Detection of viruses in sweetpotato from Honduras and Guatemala augmented by deep-sequencing of small-RNAs. Plant Disease, 96(10), 1430-1437. https://doi.org/1094/PDIS-03-12-0268-RE
- Lbida, B., Bennani, A., Serrhini, M.N., & Zemzami, M. (2005). Biological, serological and molecular characterization of three isolates of Citrus tristeza closterovirus introduced into Morocco. EPPO Bulletin, 35(3), 511-517. https://doi.org/1111/j.1365-2338.2005.00895.x
- Li, R., Gao, S., Hernandez, A.G., Wechter, W.P., Fei, Z., & Ling, K.S. (2012). Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PloS One, 7, e37127. https://doi.org/10.1371/journal.pone.0037127
- Matsumura, E.E., Coletta-Filho, H.D., Nouri, S., Falk, B.W., Nerva, L., Oliveira, T.S., Dorta, S.O., & Machado, M.A. (2017). Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area reveals diverse known and putative novel viruses. Viruses, 9(4), 92. https://doi.org/3390/v9040092.
- Melzer, M.J., Borth, W.B., Sether, D.M., Ferreira, S., Gonsalves, D., & Hu, J.S. (2010). Genetic diversity and evidence for recent modular recombination in Hawaiian Citrus tristeza virus. Virus Genes, 40, 111-118. https://doi.org/11007/s11262-009-0409-3
- Mine, A., & Okuno, T. (2012). Composition of plant virus RNA replicase complexes. Current Opinion Virology,2, 669–675. https://doi.org/1016/j.coviro.2012.09.014
- Moreno, P., Ambros, S., Albiach-Marti, M.R., Guerri, J., & Peoa, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry Molecular Plant Patholology, 9, 251-268. https://doi.org/1111/j.1364-3703.2007.00455.x
- Moshe, B.J., & Munir, M. (2000). The Role of Defective RNAs in Citrus Tristeza Virus https://doi.org/10.3389/fmicb.2013.00132
- O’Neal, S.T., Samuel, G.H., Adelman, Z.N., & Myles, K.M. (2014). Mosquito-borne viruses and suppressors of invertebrate antiviral RNA silencing. Viruses, 6(11), 4314-4331. https://doi.org/3390/v6114314
- Pais da Cunha, A.T., Chiumenti, M., Ladeira, L.C., Abou Kubaa, R., Loconsole, G., Pantaleo, V., & Minafra, A. (2021). High throughput sequencing from Angolan citrus accessions discloses the presence of emerging CTV strains. Virology Journal, 18(1), 1-8. https://doi.org/1186/s12985-021-01535-x
- Pappu, H.R., Pappu, S.S., Kano, T., Koizumi, M., Cambra, M., Moreno, P., & Niblett, C.L. (1995). Mutagenic Analysis and Localization of a Highly Conserved Epitope. Phytopathology, 85, 1311-1315. https://doi.org/1094/Phyto-85-1311
- Ramírez-Pool, J.A., Xoconostle-Cázares, B., Calderón-Pérez, B., Ibarra-Laclette, E., Villafán, E., Lira-Carmona, R., & Ruiz-Medrano, R. (2022). Transcriptomic analysis of the host response to mild and severe CTV strains in naturally infected Citrus sinensis orchards. International Journal of Molecular Sciences, 23(5), 2435. https://doi.org/3390/ijms23052435.
- Roy, A., & Brlansky, R.H. (2010). Genome analysis of an orange stem pitting Citrus tristeza virus isolate reveals a novel recombinant genotype. Virus Research, 151, 118–130. https://doi.org/1016/j.virusres.2010.03.017
- Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambrs S. (2006). The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain: comparison with isolates from different origins. Archives of Virology, 151, 387–398. https://doi.org/1007/s00705-005-0618-6
- Ruiz-Ruiz, S., Navarro, B., Gisel, A., Pena, L., Navarro, L., Moreno, P., Serio, F.D., & Flores, R. (2011). Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Molecular Biology, 75, 607-619. https://doi.org/1007/s11103-011-9754-4
- Saponari, M., & Yokomi, R.K. (2010). Use of the coat protein (CP) and minor CP intergene sequence to discriminate severe strains of Citrus tristeza virus (CTV) in three US CTV isolate collections. In International Organization of Citrus Virologists Conference Proceedings (1957-2010), 17, 17.
- Satyanayanana, T., Gowda, S., Ayllón, M.A., & Dawson, W. O. (2004). Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5´region. Proceeding of National Academic Science. USA, 101, 799-804. https://doi.org/10.1073/pnas.0307747100
- Suastika, C., Natsuaki, T., Terui, H., Kano, T., Ieki, H., & Okuda, S. (2001). Nucleotide sequence of Citrus tristeza virus seedling yellows isolate. Journal of General Plant Pathology, 67(1), 73-77. https://doi.org/1007/PL00012992
- Turchinovich, A., Surowy, H., Serva, A., Zapatka, M., Lichter, P., & Burwinkel, B. (2014). Capture and Amplification by Tailing and Switching (CATS) An ultrasensitive ligation-independent method for generation of DNA libraries for deep sequencing from picogram amounts of DNA and RNA. RNA biology, 11(7), 817-828. https://doi.org/4161/rna.29304
- Vives, M.C., Rubio, L., Lopez, C., Navas-Castillo, J., Albiach-Martí, M.R., Dawson, W.O., Guerri, J., Flores, R., Moreno, P. (1999). The complete genome sequence of the major component of a mild citrus tristeza isolate. Journal of General Virology, 80, 811–816. https://doi.org/1099/0022-1317-80-3-811
- Wang, X., Goregaoker, S. P., & Culver, J. N. (2009). Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factoris associated with the suppression of systemic host defenses. Journal of Virology. 83, 9720–9730. https://doi.org/1128/JVI.00941-09
- Weng, Z., Barthelson, R., Gowda, S., Hilf, M. E., Dawson, W. O., Galbraith, D. W., & Xiong, Z. (2007). Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLoS One, 2(9), e917. https://doi.org/1371/journal.pone.0000917
- Wylie, S. J., Li, H., Saqib, M., & Jones, M. G. (2014). The global trade in fresh produce and the vagility of plant viruses: a case study in garlic. PLoS One, 9 (8), e105044. https://doi.org/1371/journal.pone.0105044
- Wu, G.W., Tang, M., Wang, G.P., Wang, C.X., Liu, Y., Yang, F., & Hong, N. (2014). The epitope structure of Citrus tristeza virus coat protein mapped by recombinant proteins and monoclonal antibodies. Virology, 448, 238-246. https://doi.org/1016/j.virol.2013.10.021
- Yokomi, R., Selvaraj, V., Maheshwari, Y., Chiumenti, M., Saponari, M., Giampetruzzi, A., Weng, Z., Xiong, Z., & Hajeri, S. (2018). Molecular and biological characterization of a novel mild strain of Citrus tristeza virus in California. Archives of Virology, 163, 1795-1804. https://doi.org/1007/s00705-018-3799-5
- Yokomi, R. (2019). CTV vectors and interactions with the virus and host plants. Citrus Tristeza Virus: Methods and Protocols, 29-53. https://doi.org/1007/978-1-4939-9558-5_4.
|