- Amjed, A., Sanjani, S., Hoogenboom, G., Ahmad, A., Khaliq, T., Wajid, S. A., Noorka, I. R., & Ahmad, S. (2012). Application of crop growth models in agriculture of developing countries: a review. Horticultural Science and Technology, 1(4), 95-99. https://doi.org/10.1016/S1125-0301(02)00100-5
- Anonymous, (2022). Agricultural Statistics. Iranian Ministry of Agricultural Jihad. Department of Planning and Economic Affairs. Center of Statistics and Information Technology. Iran. p. 95. (in Persian).
- Boote, K . (2011). Crop adaptation to climate change. Improving soybean cultivars for adaptation to climate change and climate variability. S.S. Yadav, R.J. Redden, J.L. Hatfield, H. Lotze-Campen, and A.E. Hall international editions. Wiley-Blackwell pp, 370-395. https://doi.org/10.1002/9780470960929.ch26
- Choukan, R. (2013). Final Report of Yield Trial and Adaptability of Late and Medium Maturing promising Hybrids of Maize (Final Stage). In: Seed and Plant Improvement Institute (Ed.), Agricultural Research, Education and Extension Organization, Iran, pp. 50. (in Persian with English abstract).
- Delve, R. J., Probert, M. E., Cobo, J., Ricaurte, J., Rivera, M., Barrios, E., & Rao, I. M. (2009). Simulating phosphorus responses in annual crops using APSIM: model evaluation on contrasting soil types. Nutrient Cycling in Agroecosystems, 84, 293-306. https://hdl.handle.net/10568/17023
- Dupuis, I., & Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays) reproductive tissues. Plant Physiology, 94, 665-670. https://doi.org/10.1016/S1125-0301(02)00100-5
- FAO. (2017). Agricultural production statistics. Available: http://faostat.fao.org
- Fosu-Mensah, B. Y., MacCarthy, D. S., Vlek, P. L. G., & Safo, E. Y. (2012). Simulating impact of seasonal climatic variation on the response of maize (Zea mays) to inorganic fertilizer in sub-humid Ghana. Nutrient Cycling in Agroecosystems, 94, 255-271. https://doi.org/1010.07/s10705-012-9539-4.2134
- Gungula, D., Kling, J., & Togun, A. (2003). CERES-Maize predictions of maize phenology under nitrogen-stressed conditions in Nigeria. Agronomy Journal, 95, 892-899. https://doi.org/10.2134/agronj2003.8920
- Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001
- Izadi-Darbandi, E. (2012). Evolution of drought stress and nitrogen rate on redroot pigweed (Amaranthus retroflexus) and corn (Zea mays) competition. Pajouhesh & Sazandegi. 94, 68-74. (in Persian).
- Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., & McLean, G. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3-4), 267-288. https://doi.org/10.1016/S1161-0301(02)00108-9
- Kpongor, D. S. (2007). Spatially explicit modeling of sorghum (Sorghum bicolor (L.) Moench) production on complex terrain of a semi-arid region in Ghana using APSIM. Universitäts-und Landesbibliothek, Bonn, Germany, pp, 144. https://hdl.handle.net/10568/17027
- MacCarthy, D. S., Sommer, R., Vlek, P. L. (2009). Modeling the impacts of contrasting nutrient and residue management practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using APSIM. Field Crops Research, 113, 105-115. https://hdl.handle.net/10568/17023
- Madadizadeh, M. (2017). Simulation of growth and development of current maize (Zea mays) hybrids under different nitrogen levels in Kerman province, Iran. Shahid Beheshti University, Tehran, Iran, pp, 165. (in Persian).
- Marwein, M. A., Choudhury, B. U., Chakraborty, D., Kumar, M., Das, A., Rajkhowa, D. J. (2017). Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays) in subtropical northeastern Himalayas. International Journal of Biometeorology, 61, 845-855. https://doi.org/10.1007/s00484-016-1262-4
- McCown, R., Hammer, G., Hargreaves, J., Holzworth, D., & Freebairn, D. (1996). APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 50, 255-271. https://doi.org/10.1016/S1125-0301(02)00100-5
- Mera, R. J., Niyogi, D., Buol, G. S., Wilkerson, G. G., & Semazzi, F. H. M. (2006). Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change, 54, 163-182. https://doi.org/10.1016/j.gloplacha.2005.11.003
- Miao, Y., Mulla, D. J., Batchelor, W. D., Paz, J. O., Robert, P. C., & Wiebers, M. (2006). Evaluating management zone optimal nitrogen rates with a crop growth model. Agronomy Journal, 98, 545-553. https://doi.org/10.2134/agronj2005.0153
- Moini, S., Javad, S., & Dehghan Manshadi, M. (2011). Feasibility study of solar energy in Iran and preparing radiation atlas. Recent Advances in Environment, Energy Systems and Naval Science: Proceedings of the 4th International Conference on Environmental and Geological Science and Engineering. Pp, 1-7.
- Monteith, J. L. (1986). How do crops manipulate water supply and demand? Philosophical Transactions of the Royal Society, 316, 245-259. https:// 10.1098/rsta.1986.0007.2006.09.007
- Monzon, J., Sadras, V., Abbate, P., & Caviglia, O. (2007). Modeling management strategies for wheat–soybean double crops in the south-eastern Pampas. Field Crops Reseearch, 101, 44-52. https://doi.org/10.1016/j.fcr.2006.09.007
- Prescott, J. A. (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64(1), 114-118. https://doi.org/10.1016/S1125-0301(02)00100-5
- Rafiee Manesh, S., Aynehband, A., & Nabati Ahmadi, D. (2010). Investigating the effect of irrigation water amount and irrigation depletion time in different stages of growth on yield and yield components of the SC704 maize hybrid under Ahwaz climatic conditions. Crop Physiology Journal, 7, 93-105. (in Persian).
- Rahimi-Moghaddam, S., Kambouzia, J., & Deihimfard, R. (2018). Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology, 253, 1-14. https://doi.org/10.1016/j.agrformet.2018.01.032
- Saxton, K. E., & Willey, P. H. (2006). The SPAW model for agricultural field and pond hydrologic simulation. Watershed models. V.P. Singh, D.K. Frevert international editions. Boca Raton Pp, 401-435. https://doi.org/11.1016/0376-4290(86)90054-1
- Sinclair, T. R. (1986). Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Research, 15(2), 125-141. https://doi.org/10.1016/0378-4290(86)90082-1
- Soler, C. M. T., Sentelhas, P. C., & Hoogenboom, G. (2007). Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27, 165-177. https://doi.org/10.1016/j.eja.2007.03.002
- Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. CAB, Cambridge, United Kingdom. 337p.
- Teixeira, E. I., Zhao, G., de Ruiter, J., Brown, H., Ausseil, A. G., Meenken, E., & Ewert, F.(2017). The interactions between genotype, management and environment in regional crop modelling. European Journal of Agronomy, 88, 106-115. https://doi.org/10.1016/j.eja.2016.05.005
- Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., Chapmesan, S. C., Hargreaves, J. N. G., Huth, N. I., & Mclean, G. (2002). Development of generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18, 121-140. https://doi.org/10.1016/S1161-0301(02)00100-4
- Zizhong, L., & Zenghui, S. (2016). Optimized single irrigation can achieve high corn yield and water use efficiency in the Corn Belt of Northeast China. European Journal of Agronomy, 75, 12-24. https://doi.org/10.1016/j.eja.2015.12.015
|