[1] C. Santhosh, V. Velmurugan, G. Jacob., S.K. Jeong, A.N. Grace, Bhatnagar, “A Role of nanomaterials in water treatment applications: A review ,” Chemical Engineering Journal , vol. 306, pp. 1116–1137, (2016).
[2] T.A. Dontsova, S.V. Nahirniak, I.M. Astrelin, “Metal oxide Nanomaterials and Nanocomposites of Ecological Purpose,” Hindawi Journal of Nanomaterials, vol. 2019, pp. 1–31,(2019).
[3] H. A. Alalwan., A. H. Alminshid., M.M. Mohammed., M. F. Mohammed, M. H. Shadhar, “ Reviewing of Using Nanomaterials for Wastewater Treatment,” Pollution, vol.8, pp. 995-1013(2022).
[4] I. Ielo, F. Giacobello, S. Sfameni, G. Rando, M. Galletta, V. Trovato, G. Rosace, M.R. Plutino, “ Nanostructured Surface Finishing and Coatings: Functional Properties and Applications ,” Materials, , vol. 14, pp.2733 (2021).
[5] T. AbouElmaaty, S.A. Abdeldayem, S.M. Ramadan, K. Sayed-Ahmed, M.R. Plutino , “ Coloration and Multi-Functionalization of Polypropylene Fabrics with Selenium Nanoparticles ,” Polymers, , vol. 13, pp. 2483(2021).
[6] T.A. Saleh , “ Nanomaterials: Classification, properties, and environmental toxicities ,” Environmental Technology & Innovation, vol.20, pp. 101067(2020).
[7] J. Liang, PP.J. Dijkstra, A.A. Poot, D.W. Grijpma, “ Hybrid Hydrogels Based on Methacrylate-Functionalized Gelatin (GelMA) and Synthetic Polymers ,” Biomedical Materials & Devices, vol. 10-2022 (2022).
[8] G. Rando, S. Sfameni, M. Galletta, D. Drommi, S. Cappello, M.R. Plutino, “ Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation ,” Molecules, vol.27,pp. 4856(2022).
[9] U. Krishnan, M. Kaur, K. Singh, G. Kaur, P. Singh, M. Kuar, G. Kuar, M. Kumar, “ MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant ,” Journal of Materials Science: Materials in Electronics, vol. 30 , pp. 371121(2019).
[10] B. Jain, A.K. Singh, A. Hashmi, Al .Et , “ Surfactant-assisted cerium oxide and its catalytic activity towards Fenton process for non-degradable dye ,” Advanced Composites and Hybrid Materials, vol.3, pp.430–441 (2020).
[11] B. Ouadil , O. Cherkaoui , M. Safi , M. Zahouily, “ Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites ,” Applied Surface Science, vol.414, pp.292302(2017).
[12] L. Azfarniam, M. Norouzi, “ Multifunctional polyester fabric using a multicomponent treatment ,” Fibers Polymer, vol.17, pp.298–304 (2016).
[13] M. Sanei, A.R. Mahdavian, S. Torabi, H.S. Mobaraken, “ Efficient modification of nanosilica particles in preparation of anti-scratch transparent polyacrylic films through miniemulsion polymerization ,” Polymer Bulletin ,vol.74, pp.1879–1898 (2017).
[14] S. Karthik, P. Siva, K.S. Balu, R. Suriyaprabha, V. Rajendran, M. Maaza , “ Acalypha indicamediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity ,” Advanced Powder Technology,vol.28,pp.318494(2017).
[15] D. Demir, A. Vaseashta, N. Bölgen , “ Recent Advances of Electrospinning and Multifunctional Electrospun Textile Materials for Chemical and Biological Protection ,” Nanoscience and Nanotechnology in Security and Protection against CBRN Threats, pp.275-289 (2020).
[16] A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Tarii, S. Bagheri, K. Saberyan, “Synthesis, characterization, and photovoltaic application of NiTiO3 nanostructures via two-step sol–gel method ,” Journal of Materials Science: Materials in Electronics, vol.26, pp.5735–5742 (2015).
[17] M. Magdalane, C., Kaviyarasu, K., Raja, A., Arularasu, M.V., Mola, G.T., Isaev, A.B., Al-Dhabi, N.A., Arasu, M.V., Jeyaraj, B., Kennedy, J., Maaza, M., “ Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: investigation of cytotoxicity, antibacterial growth inhibition using catalyst ,” Journal of Photochemistry and Photobiology B: Biology,vol.185,pp. 27582(2018).
[18] W. Huang, W. He, L. Long, et al , “ Thermal degradation kinetics of flame-retardant glass-fiber-reinforced polyamide 6T composites based on bridged DOPO derivatives,” Polymer Bulletin, vol.76, pp.2061–2080 (2019).
[19] K.B. Yazhini, H.G. Prabu, “ Study on flame-retardant and UV-protection properties of cotton fabric functionalized with ppyZnOCNT nanocomposite ,” RSC Advances, vol. 5 , pp. 490629(2015).
[20] S. Michałowski, E. Hebda, K. Pielichowski, “ Thermal stability and flammability of polyurethane foams chemically reinforced with POSS ,” Journal of Thermal Analysis and Calorimetry , vol.130, pp.155–163 (2017).
[21] D. Zhang, B.L. Williams, E.M. Becher, S.B. Shrestha, Z. Nasir, B.J. Lofink, V.H. Santos, H. Patel, X. Peng, L. Sun, “ Flame retardant and hydrophobic cotton fabrics from intumescent coatings ,” Advanced Composite Hybrid Materials, vol. 1, pp.177–184 (2018).
[22] A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, S.A. Padbury, “ Developments in flame retardant textiles—a review ,” Polymer Degradation and Stability, vol.88,pp.312(2005).
[23] M. Xiong, Z. Ren,W. Liu, , “ Fabrication of UV-resistant and superhydrophobic surface on cotton fabric by functionalized polyethyleneimine/SiO2 via layer-by-layer assembly and dip-coating ,”Cellulose, vol.26, pp.8951–8962 (2019).
[24] K. Han, M. Yu, “ Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation ,” Applied Polymer Science ,vol.100,pp.158893(2006).
[25] S. Lee, S.K. Obendorf, “ Transport properties of layered fabric systems based on electrospun nanofibers ,” Fibers Polymer, vol. 8, pp.501–506 (2007).
[26] V. Babaahmadi, M. Montazer, “ Reduced graphene oxide/SnO2 nanocomposite on PET surface: synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile ,” Colloids and Surfaces A: Physicochemical and Engineering Aspects , vol.506, pp.50713(2016).
[27] R.K. Matharu, L. Ciric, M. Edirisinghe, “ Nanocomposites: suitable alternatives as antimicrobial agents ,” Nanotechnology,vol.29, pp.282001(2018.
[28] R. Liu, L. Hou, G. Yue, H. Li, J. Zhang, J. Liu, B. Miao, N. Wang, J. Bai, Z. Cui, T. Liu, Y. Zhao , “ Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers ,” Advanced. Fiber Materials, vol.4, pp.604–630 (2022).
[29] Y.F. Goh, I. Shakir, R. Hussain, “ Electrospun fibers for tissue engineering, drug delivery, and wound dressing ,” Journal of Materials Science , vol.48, pp.3027–3054 (2013).
[30] S. Jambaladinni , J.S. Bhat, “ Enhanced Structural, Optical, and Electrical Properties of PVP/ZnO Nanocomposites ,” Iranian Journal of Science and Technology, Transaction A: Science , vol. 46, pp.333–342 (2022).
[31] A. Toncheva, D. Paneva, N. Manolova, I. Rashkov, “Electrospun poly(L-lactide) membranes containing a single drug or multiple drug system for antimicrobial wound dressings,” Macromolecular research, vol. 19, pp.1310–1319 (2011).
[32] M.A. Ghavimi, A. Bani Shahabadi, S. Jarolmasjed , M.Y. Memar, S.M. Dizaj, S. Sharifi, “ Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration,” Scientific Reports, vol.10, pp.18200 (2020).
[33] P. Uttayarat, S. Jetawattana, P. Suwanmala, J. Eamsiri, T. Tangthong, S. Pongpat , “ Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application,” Fibers and Polymers, vol. 13,pp. 999–1006 (2012).
[34] Li, Z., Wang, L., Chen, S., Feng, C., Chen, S., Yin, N., Yang, J., Wang, H., Xu, Y., “Facilely green synthesis of silver nanoparticles into bacterial cellulose,” Cellulose, vol. 22, pp.373–383 (2015).
[35] Li, Ll., Wang, Lm., Xu, Y., Lv, L.X., “Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro,” Archives of Orthopaedic and Trauma Surgery , Vol.132, pp.897–903 (2012).
[36] J.S. Narayanan, C. Anjalidevi , V. Dharuman , “ Nonenzymatic glucose sensing at ruthenium dioxide–poly(vinyl chloride)–Nafion composite electrode,” Journal of Solid State Electrochemistry, vol.17, pp.937–947 (2013).
[37] D. Ragupathy, J.J. Park, S.C. Lee, J.C. Kim, P. Gomathi, M.K. Kim, S.M. Lee, H.D. Ghim, A. Rajendran, S.H. Lee, K.M. Jeon, “ Electrochemical grafting of poly(2,5-dimethoxy aniline) onto multiwalled carbon nanotubes nanocomposite modified electrode and electrocatalytic oxidation of ascorbic acid,” Macromolecular Research, vol.19, pp.764–769 (2011).
[38] H. Ishida, S. Campbell, J. Blackwell, “ General approach to nanocomposite preparation,” Chemistry of Materials ,vol.12 ,pp.12607(2000).
[39] H. Aguilar-Bolados, M.A. Lopez-Manchado, J. Brasero, F. Avile´s, M. Yazdani-Pedram, “Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites,” Composites Part B: Engineering ,vol.87, pp.3506(2016).
[40] Y. Zare, “ Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties,” Composites Part A: Applied Science and Manufacturing , Vol. 84,pp.15864(2016).
[41] J.K. Pandey, R.K. Raghunatha , K.A Pratheep, , R.P. Singh, “An overview on the degradability of polymer nanocomposites,” Polymer Degradation and Stability , Vol.88,pp.23450(2005).
[42] D.R. Paul, L.M. Robeson, “ Polymer nanotechnology: nanocomposites,” Polymer ,vol.49,pp.3187204(2008).
[43] S. Behrens, I. Appel, “ Magnetic nanocomposites,” Current Research in Biotechnology , vol. 39, pp.8996(2016).
[44] Y. Zhang, S. Gong, Q. Zhang, P. Ming, S. Wan, J. Peng, L. Jiang, Q. Cheng, “ Graphene-based artificial nacre nanocomposites,” Chemical Society Reviews , vol.45,237895(2016).
[45] S. Coiai, E. Passaglia, F. Cicogna, S. Javarone, M. Onor, W. Oberhauser, A. Pucci, P. Minei, G. Lasilli, “ Humidity-responsive fluorescent polymer nanocomposites,” Conferenza di Dipartimento, p.28-30,(2019).
[46] R.D. Farahani, M. Dube´, D. Therriault, “Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications,” Advanced Materials , vol.28, p.5794821(2016).
[47] S. Komarneni, “ Nanocomposites,” Journal of Materials Chemistry, vol.2, p.121930(1992).
[48] W. Barthlott, C. Neinhuis, “ Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, vol.202,p.18(1997).
[49] C. Wu, T.W. Kim, F. Li, T. Guo, “ Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene coreshell nanocomposites,” ACS Nano, vol.10, p.644957(2016).
[50] W. Fu, E. Zhao, X. Ren, A. Magasinski, G. Yushin, “ Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6V wearable aqueous supercapacitors,” Advanced Energy Materials, vol. 8,p. 1703454(2018).
[51] Y. Zare, I. Shabani , “Polymer/metal nanocomposites for biomedical applications,” Materials Science and Engineering: C, vol.60,p.195203(2016).
[52] S.T. Rajan, V.A Thampi, K.S. Kesavan, B. Subramanian, “ Surface functionalization and antibacterial activity of biomedical textiles with metal oxides-carbon nanocomposites,” Ceramics International, vol.45(5), pp.521017(2019).
[53] F. Rault, S. Giraud, F. Salaün , “ Flame Retardant/Resistant Based Nanocomposites in Textile,” Flame Retardants, pp.131-165 (2015).
[54] N.F. Attia, M.S. Morsy, “ Facile synthesis of novel nanocomposite as antibacterial and flame retardant material for textile fabrics,” Materials Chemistry and Physics , vol. 180, p. 36472(2016).
[55] A. Khataee, P. Gholami, D. Kalderis, E. Pachatouridou, M. Konsolakis, “ Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye,” Ultrasonics Sonochemistry, vol.41, p.50313(2018).
[56] U. Krishnan, M. Kaur, K. Singh, G. Kaur , P. Singh, M. Kumar, A. Kumar, “ MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant,” Journal of Materials Science: Materials in Electronics , vol.30 , p.371121(2019).
[57] C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, M. Maaza, “ Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/V is light induced photocatalytic degradation of Rhodamine-B dye for textile engineering application,” Journal of Alloys and Compounds , vol. 727,p.132437(2017).
[58] B. Ouadil, O. Cherkaoui , M. Safi, M. Zahouily, “ Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites,” Applied Surface Science , vol.414,p. 292302(2017).
[59] H. Wang, L. Xu, X. Song, Z. Cai, “ Facile preparation of acid-resistant polyester fabrics with organic/inorganic nanocomposites,” Clothing and Textiles Research Journal , vol. 35, p.98110(2017).
[60] H.M. Ahmed, M.M. Abdellatif, S. Ibrahim, F.H.H. Abdellatif , “ Mini-emulsified copolymer/silica nanocomposite as effective binder and self-cleaning for textiles coating ,” Progress in Organic Coatings , vol. 129,p.528, (2019).
[61] S. Karthik, P. Siva, K.S. Balu, R. Suriyaprabha , V. Rajendran , M. Maaza , “ Acalypha indicamediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity ,” Advanced Powder Technology, vol. 28, p.318494(2017).
[62] N. Bo¨lgen, A. Vaseashta , “ Nanocomposites of electrospun polymeric materials as protective textiles against chemical and biological hazards ,” Advanced nanotechnologies for detection and defence against CBRN agents, p. 2538(2018).
[63] S.K. Lakhera, H.Y. Hafeez, P. Veluswamy, V. Ganesh, A. Khan, H. Ikeda, B. Nappolian, “ Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites ,” Applied Surface Science, vol.449,p.7908(2018).
[64] M.C. Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, N.A. Al-Dhabi, M. Valan Arasu, “ Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: investigation of cytotoxicity, antibacterial growth inhibition using catalyst ,” Journal of Photochemistry and Photobiology B: Biology, vol.185, p.27582(2018).
[65] J . Vasiljevic , M. Colovi ˇ c, I. Jerman, B. Simon ´ ciˇ c, A. Dem ˇ sar, Y. Samaki, M. Sobak, E. Sest, B. Golija, M. Leskovsek, V. Bukosek, J. Medved, M. Barbalini, G. Malucelli, S. Bolka , “ In situ prepared polyamide 6/ ˇ DOPO-derivative nanocomposite for melt-spinning of flame retardant textile filaments ,” Polymer Degradation and Stability,Vol.166, p.509(2019).
[66] K.B. Yazhini, H.G. Prabu, “ Study on flame-retardant and UV-protection properties of cotton fabric functionalized with ppyZnOCNT nanocomposite,” RSC Advances, vol. 5, P.490629(2015).
[67] E. Devaux, M. Rochery, S. Bourbigot, “ Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics ,” Fire and Materials, vol. 26, p.14954(2002).
[68] N. Dhineshbabu, P. Manivasakan, A. Karthik, V. Rajendran, “ Hydrophobicity, flame retardancy and antibacterial properties of cotton fabrics functionalised with MgO/methyl silicate nanocomposites,” RSC Advances, vol.4 , p.3216173(2014).
[69] A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, S.A. Padbury, “ Developments in flame retardant textiles—a review ,” Polymer Degradation and Stability, vol.88, p.312(2005).
[70] M.Tian, X. Tang, L. Qu, S. Zhu, X. Guo, G. Han, “ Robust ultraviolet blocking cotton fabric modified with chitosan/graphene nanocomposites ,” Materials Letters, vol.145, p.3403(2015).
[71] K. Han, M. Yu, “ Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation ,” Journal of Applied Polymer Science , vol.100,p.158893(2006).
[72] S. Lee , “ Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fibers ,” Fibers and Polymers , vol.10,p.295301(2009).
[73] N.M. Mahmoodi, S. Soltani-Gordefaramarzi, ՙՙ Dye Removal from Single and Quaternary Systems Using Surface Modified Nanoparticles: Isotherm and Kinetics Studiesˮ, Progress In Color, Colorants And Coatings, vol.9 , pp.85–97(2016).
[74]V.Babaahmadi, M. Montazer, “ Reduced graphene oxide/SnO2 nanocomposite on PET surface: synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile ,” Colloids and Surfaces A: Physicochemical and Engineering Aspects , vol.506, p.50713(2016).
[75] S. K. Shukla, N. B. Singh, R.P. Rastogi, “ Efficient ammonia sensing over zinc oxide /polyaniline nanocomposite” Indian Journal of Engineering and Materials Sciences, vol.20, pp.319–324(2013).
[76] L. Duan, H. Li, X. Wang, C. Wang , “ Fabrication of novel magnetic nanocomposite with a number of adsorption sites for the removal of dye ,” International Journal of Biological Macromolecules, vol. 78, pp.17–22(2015).
[77] M.Cantarella, R. Sanz, M. A. Buccheri, L. Romano, V. Privitera , “ PMMA/TiO2 nanotubes composites for photocatalytic removal of organic compounds and bacteria from water,” Materials Science in Semiconductor Processing, vol. 42, pp.58–61(2016).
[78] P. Meneghetti, S. Qutubuddin , “ Synthesis, thermal properties and applications of polymer–clay nanocomposites,” Thermochimica Acta, vol. 442, pp.74–77(2006).
[79] A.Cobut, H. Sehaqui , L. A. Berglund , “ Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix ,” BioRes Scientia, vol. 9, pp.3276–3289(2014).
[80] Y. Wan, C. Wu, G. Xiong, G. Zuo, J. Jin, K. Ren, Y. Zhu, Z. Wang, H. Luo, “ Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique ,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 47, pp. 29–37(2015).
[81] S. N. Magonov, D. H. Reneker, “ Characterization of polymer surfaces with atomic force microscopy ,” Annual Review of Materials Research, vol. 27, pp.175–222(1997).
[82] S. L. Kim, F. Fornasiero, H. G. Park, J. B. E. In, E. Meshot, G. Giraldo, M. Stadermann, M. Fireman, J. Shan, C. P. Grigoropoulos, “ Fabrication of flexible, aligned carbon nanotube/polymer composite membranes by in-situ polymerization ,” Journal of Membrane Science, vol.460, pp.91–98(2014).
[83] M.Bahmanyar, S. Sedaghat, A. Ramazani , H. Baniasadi, , “ Preparation of ethylene vinyl acetate copolymer/graphene oxide nanocomposite films via solution casting method and determination of the mechanical properties ,” Polymer-Plastics Technology and Engineering, vol. 54, pp.218–222(2015).
[84] J. R.Capadona, O. V. Den Berg, L. A. Capadona, M. Schroeter, S. J. Rowan, D. J. Tyler, C. Weder , “ A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates ,” Nature Nanotechnology, vol. 29, pp.765–769(2007).
[85] Y. Yu, S. Zhihuai, S. Chen, C. Bian, W. Chen, G. Xue , “ Facile synthesis of polyaniline–sodium alginate nanofibers ,” Langmuir, vol.22,pp.3899–905(2006).
[86] N.M.Mahmoodi , “ Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterizationand binary system dye removal ,” Journal of the Taiwan Institute of Chemical Engineers , vol.44 , pp.322–330(2013).
[87] S. Zahi, M. Hashim, A.R. Daud, “ Synthesis, magnetic properties and microstruc-ture of Ni–Zn ferrite by sol–gel technique ,” Journal of Magnetism and Magnetic Materials , vol.308,pp.177–82(2007).
[88] N.C.Thomas, “The early history of spectroscopy” , Journal of Chemical Education - ACS Publications, vol.68(8), pp.631(1991).
[89] S. Maensiri , C Masingboon, B Boonchom, S. Eraphin , “A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white” , Scripta Materialia, vol.56, pp.797–800(2007).
[90] M. Mouallem-Bahout, S. Bertrand, O. Pena, “ Synthesis and characterization of Zn1xNixFe 2O 4 spinels prepared by a citrate precursor ,” Journal of Solid State Chemistry, vol.178,pp.1080–6(2005).
[91] V.A.M.Brabers , “ Infrared spectra of cubic and tetragonal manganese ferrites ,” physica status solidi , vol. 33, pp.563–72(1969).
[92] S.Hafner, Z. Krist, “ Order/disorder and I.R-absorption. IV. The absorption of some metal oxides with spinel structure (Ordnung/unordnung und ultrarotabsorp-tion IV, die absorption einiger metalloxyde mit spinellstruktur) ,” Scripta Materialia, vol.115,pp.331–58(1961).
[93] R.D.Waldron, “ Infrared spectra of ferrites,” Physical Review Journals, vol.99,pp.1727–35(1955).
[94] S.M. Goodman, R. Bura, A.B. Dichiara, “ Facile impregnation of graphene into porous wood filters for the dynamic removal and recovery of dyes from aqueous solution ,” ACS Applied Nano Materials, vol.1 , pp. 5682–5690(2018).
[95] J. He, W. Ma J. He, J. Zhao, J.C. Yu, “ Photooxidation of azo dye in aqueous dispersions of H2O2/FeOOH ,” Applied Catalysis B: Environmental,vol.39, pp.211–220(2002).
[96] N.M.Mahmoodi, J. Ghobadi, “ Extended isotherm and kinetics of binary system dye removal using carbon nanotube from wastewater ,” Desalination and Water Treatment, vol.54,2777-2793(2015)
[97] K.S. Low, C.K. Lee , “ Quaternized rice husk as sorbent for reactive dyes,” Bioresource Technology, vol.12 ,pp.121–125(1997).
[98] H.L. Chiang, C.P. Huang, P.C. Chiang, “ The surface characteristics of activated carbon as affected by ozone and alkaline treatment ,” Chemosphere,vol. 47 , pp.257–265(2002).
[99] B. Hayati, N.M. Mahmoodi, “ Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: mechanism, isotherm and kinetic ,” Desalination and Water Treatment, vol.47, pp.322–333(2012).
[100] M. Allahbakhshi, N.M. Mahmoodi, M. Mosaferi , H. Kazemian, H. Aslani , “ Synthesis of functionalized metal-organic framework metal-organic framework (MIL-53)/Chitosan for removing dye and pharmaceuticals ,” Surfaces and Interfaces,vol.35 , p.102471(2022).
[101] P.K. Malik, “ Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36 ,” Dyes Pigments , vol.56,pp.239–249(2003).
[102] S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan, C.V. Subburaam, “ Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste ,”Bioresource Technology,vol.97, pp.1618–1625(2006).
[103] P. Duran, J. Tartaj, F. Rubio, C. Moure, O. Pena, , “ Synthesis and sintering behavior of spinel-type CoxNiMn 2xO 4 (0.2 ≤ x ≤ 1.2) prepared by the ethylene glycol–metal nitrate polymerized complex process ,” Ceramics International, vol. 31, pp. 599-610(2005).
[104] E.R. Trotman, “ Dyeing and Chemical Technology of Textile Fibers (Sixth Edition) ,” Edward Arnold, A Division of Hodder , pp.600(1991).
[105] A.B. dos Santos, F.J. Cervantes, R.E. Yaya-Beas, J.B. van Lier, “ Effect of redox mediator, AQDS, on the decolorization of a reactive azo dye containing triazine group in a thermophilic anaerobic EGSB reactor ,” Enzyme and Microbial Technology, vol.33, pp. 942-951(2003).
[106] K. Golka, S. Kopps, Z.W. Myslak, “ Carcinogenicity of azo colorants: influence of solubility and bioavailability ,” Toxicology Letters, vol.151,pp. 203-210(2004).
[107] C. O'Neill, F.R. Hawkes, D.L. Hawkes, N.D. Lourenco, H.M. Pinheiro, W. Delee, “ Color in textile effluents - sources, measurement, discharge consents and simulation: a review ,” Journal of Chemical Technology and Biotechnology, vol.74, pp.1009-1018(1999).
[108] Y. Zhou, J. Lu, Y. Zhou, Y. Liu, “ Recent advances for dyes removal using novel adsorbents: a review ,” Environmental Pollution, vol.252, pp.352–365(2019).
[109] C.I.Pearce, J.R. Lloyd, J.T. Guthrie, “ The removal of colour from textile wastewater using whole bacterial cells: a review ,” Dyes Pigments,vol.58, pp.179–196(2003).
[110] Y.Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, “ Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review ,” Chemosphere, vol. 211, pp.235–253(2018).
[111] L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, “ Removal of heavy metals from water sources in the developing world using low-cost materials: a review ,” Chemosphere, vol. 229,p.142–159(2019).
[112] P. Senthil Kumar, G. Janet Joshiba, C.C. Femina, P. Varshini, S. Priyadharshini, M.S. Arun Karthick, R. Jothirani, “ A critical review on recent developments in the low-cost adsorption of dyes from wastewater ,” Desalination and Water Treatment, Vol.172,p.395–416(2019).
[113] N.A.Khan, B.N. Bhadra, S.H. Jhung, “ Heteropoly acid-loaded ionic liquid@ metal- organic frameworks: effective and reusable adsorbents for the desulfurization of a liquid model fuel ,” Chemical Engineering Journal, vol.334, p.2215–2221(2018).
[114] V. Katheresan, J. Kansedo, S.Y. Lau, “ Efficiency of various recent wastewater dye removal methods: a review ,” Journal of Environmental Chemical Engineering, vol. 6, p.4676–4697(2018).
[115] Q.U. Ain, M.U. Farooq, M.I. Jalees, “ Application of magnetic graphene oxide for water purification: heavy metals removal and disinfection ,” Journal of Water Process Engineering, vol.33, p. 101044(2020).
[116] M. Hassan, R. Naidu, J. Du, Y. Liu, F. Qi, “ Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment ,” Science of The Total Environment, Vol.702, p.134(2020).
[117] Z. Shamsollahi, A. Partovinia, “ Recent advances on pollutants removal by rice husk as a bio-based adsorbent: a critical review ,” Journal of Environmental Management, vol.246, pp.314–323(2019).
[118] H.N. Tran, H.C. Nguyen, S.H. Woo, T.V. Nguyen, S. Vigneswaran, A. Hosseini- Bandegharaei, J. Rinklebe, A. Kumar Sarmah, A. Ivanets, G.L. Dotto , T.T. Bui, R. S. Juang, H.P. Chao, “ Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review,” Critical Reviews in Environmental Science and Technology,vol.49, pp.2155–2219(2019).
[119] S.I. Siddiqui, O. Manzoor, M. Mohsin, S.A. Chaudhry, “ Nigella sativa seed based nanocomposite-MnO2/BC: an antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water ,” Environmental Research,vol.171, pp. 328–340(2019).
[120] K.S.Bharathi, S.T. Ramesh, “ Removal of dyes using agricultural waste as low-cost adsorbents: a review ,” Applied Water Science , vol.3, pp.773–790(2013).
[121] A.Bhatnagar, M.A. Sillanp, “ Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-a review ,” Chemical Engineering Journal,vol. 157 , pp. 277–296(2010).
[122] Y. Zhou, L. Zhang, Z. Cheng, “ Removal of organic pollutants from aqueous solution using agricultural wastes: a review ,” Journal of Molecular Liquids, vol. 212, pp. 739–762(2015).
[123] I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet, A. Mittal , A. Nú˜nez-Delgado, “ Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A review ,” Journal of Environmental Management,vol.261, p.110236(2020).
[124] S. Kahramann, O. Yasilada, “ Industrial and agricultural wastes for laccase production by White Rot fungi,” Folia Microbiologica, vol.46, pp. 133 – 136(2001).
[125] R. Wenqian, J. Hu, J. Qi, Y. Hou, C. Zhou, X. Wei, “ Removal of dyes from wastewater by nanomaterials: A review ,” Advanced Materials Letters, vol.10, pp. 09-20(2019).
[126] H. Horitsu, M. Takada, E. Idaka, M. Tomoyeda, T. Ogawa, “ Degradation of p-Aminoazobenzene byBacillus subtilis ,” European journal of applied microbiology and biotechnology, vol.4, pp. 217–224 (1977).
[127] X. Xiao, C.C. Xu, Y.M. Wu, P.J. Cai, W.W. Li, D.L. Du, H.Q. Yu, “ Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions ,” Bioresource Technology, vol. 110, p. 86(2012).
[128] J. Lin, X. Zhang, Z. Li, L. Lei, “ Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. Isolate ,” Bioresource Technology, vol. 101, p. 34(2010).
[129] H. Wang, X.W. Zheng, J.Q. Su, Y. Tian, X.J. Xiong, T.L. Zheng, “ Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3 ,” Journal of Hazardous Materials, vol.171, p. 654(2009).
[130] H.Chen, H. Xu, T.M. Heinze, C.E. Cerniglia, “ Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilus and Lactobacillus fermentum ,” Journal of Industrial Microbiology and Biotechnology, vol.36, p.1459(2009).
[131] C. I.Pearce, R. Christie, C. Boothman, H.V. Canstein, J.T. Guthrie, J.R. Lloyd, “ Reactive azo dye reduction by Shewanella strain J18 14 ,” Biotechnology and Bioengineering, vol.95, p.692(2006).
[132] J. Sanchez-Martin, J. Beltran-Heredia, C. Solera-Hernandez, “ Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials ,” Journal of Environmental Management, vol. 91, p.2051(2010).
[133] N. Ahmad, J. Anae, M.Z. Khan, S. Sabir, X.J. Yang, V. Kumar Thakur, P. Campo, F. Coulon, “ Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater ,” Journal of Environmental Management , vol. 295, P. 113362(2021).
[134] G. Crini, P.M. Badot, “ Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature ,” Progress in Polymer Science, vol.33, PP.399–447(2008).
[135] Z. Hasan, S.H. Jhung, “ Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions ,” Journal of Hazardous Materials , vol.283, pp. 329-339(2015).
[136] N.M. Mahmoodi, “ Dendrimer functionalized nanoarchitecture: Synthesis and binary system dye removal ,” Journal of the Taiwan Institute of Chemical Engineers, vol. 45, pp. 2008-2020(2014).
[137] S.M.Liao, Q.S. Du, J.Z. Meng, Z.W. Pang, R.B. Huang, “ The multiple roles of histidine in protein interactions ,” Chemistry Central Journal, vol. 7, p. 44(2013).
[138] J. Abdi, M. Vossoughi, Mahmoodi, N.M. Alemzadeh, I., “ Synthesis of metalorganic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal ,” Chemical Engineering Journal, vol. 326, pp.1145-1158(2017).
[139] G. Crini, P.M. Badot, “ Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature ,” Progress in polymer science , vol.33, pp. 399-447(2008).
[140] N.M. Mahmoodi, B. Hayati, M. Arami, F. Mazaheri, “ Single and binary system dye removal from colored textile wastewater by a dendrimer as a polymeric nanoarchitecture: equilibrium and kinetics ,” Journal of Chemical & Engineering Data, vol.55, pp. 4660-4668(2010).
[141] N.M.Mahmoodi, F. Najafi, “ Synthesis, amine functionalization and dye removal ability of titania/silica nano-hybrid ,” Microporous and Mesoporous Materials, vol. 156, pp. 153-160(2012).
[142] K.K.H. Choy, J.F. Porter, G. McKay, “ Langmuir Isotherm Models Applied to the Multicomponent Sorption of Acid Dyes from Effluent onto Activated Carbon ,” Journal of Chemical & Engineering Data, vol.45, p. 575(2000).
[143] S.K. Lagergren, “ About the Theory of So-called Adsorption of Soluble Substances ,” Vetenskapsakad. Handingarl, vol.24, pp.1-39(1898).
[144] Y.S.Ho, “ Adsorption of Heavy Metals From Waste Streams by Peat,The University of Birmingham ,” Birmingham, UK, (1995) (Ph.D. Thesis).
[145] A. Ozcan, A.S. Ozcan, “ Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite ,” Journal of Hazardous Materials, vol.125, p. 252(2005).
[146] S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan, C.V. Subburaam, “ Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste ,” Bioresource Technology, vol.97 ,pp. 1618(2006).
[147] W.J. Weber, J.C. Morris, Sanit, “ Kinetics of adsorption on carbon from solution ,” Journal of the Sanitary Engineering Division,vol.89, pp.31(1963).
[148] N.M. Mahmoodi, “ Dendrimer functionalized nanoarchitecture: Synthesis and binary system dye removal ,” Journal of the Taiwan Institute of Chemical Engineers, vol.45 , pp.2008-2020(2014).
[149] M. Ug˘urlu, “ Adsorption of a textile dye onto activated sepiolite ,” Microporous and Mesoporous Materials, vol.119 , pp.276(2009).
[150] E. Demirbas, M. Kobya, S. Oncel, S., Sencan, “ Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies ,” Bioresource Technology, vol.84, pp.291(2002).
[151] N.K. Amin, “ Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith ,” Desalination , vol.223, pp.152-161(2008).
[152] I. Langmuir, “ The adsorption of gases on plane surfaces of glass, mica and platinum ,” Journal of the American chemical society,vol. 40, pp. 1361-1403(1918).
[153] I. Langmuir, “ The constitution and fundamental properties of solids and liquids. ii. liquids.1 ,” Journal of the American chemical society ,39 (1917) 1848-1906.
[154] I. Langmuir, “ The constitution and fundamental properties of solids and liquids. part i. solids ,” Journal of the American chemical society, vol.38, pp.2221-2295(1916).
[155] N.M.Mahmoodi, “ Synthesis of core–shell magnetic adsorbent nanoparticle and selectivity analysis for binary system dye removal ,” Journal of Industrial and Engineering Chemistry , vol.20, pp.2050–2058(2014).
[156] K. Mishra, T. Arockiadoss, S. Ramaprabhu, “ Study of removal of azo dye by functunalized multi walled carbon nanotubes ,” Chemical Engineering Journal, Vol.162, pp. 70-80(2010).
[157] A. Afkhami, R. Moosavi, “ Adsorption Removal of Congo red, a carcinogenic textile dye, from aqueous solution by maghemite nanoparticles ,” Journal of Hazardous Materials, vol.174, pp.398-403(2010).
[158] N.M. Mahmoodi, “ Equilibrium, Kinetics, and Thermodynamics of Dye Removal Using Alginate in Binary Systems ,” Journal of Chemical & Engineering Data, vol.56, pp.2802–2811(2011).
[159] A. Ozcan, E.M. Oncu, A.S. Ozcan, “ Kinetics ,isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions on to natural sepiolite ,” Colloids and Surfaces A: Physicochemical and Engineering Aspects , vol.277,pp.90–97(2006).
[160] N.M Mahmoodi, “ Equilibrium, Kinetics, and Thermodynamics of Dye Removal Using Alginate in Binary Systems ,” Journal of Chemical & Engineering Data, vol. 56, pp. 2802-2811(2011).