Akhlaghi, A., Zamiri, M. J., Jafari Ahangari, Y., Atashi, H., Ansari Pirsaraei, Z., Deldar, H., Eghbalian, A. N., Akhlaghi, A. A., Navidshad, B., & Yussefi Kelarikolaei, K. (2013). Oral exposure of broiler breeder hens to extra thyroxine modulates early adaptive immune responses in progeny chicks. Poultry Science, 92, 1040-49. https://doi.org/10.3382/ps.2012-02545 .
Akter, M., Graham, H., & Iji, P. A. (2016). Response of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase. British Poultry Science, 57, 799-809. https://doi.org/10.1080/00071668.2016.1216943.
Barnett, Ellis, & Nordin, B. E. C. (1960). The radiological diagnosis of osteoporosis: A new approach. Clinical Radiology, 11, 166-7. https://doi.org/10.1016/S0009-9260(60)80012-8
Barshan, S., Saeedi, K., Hedayati, M., & Yari, M. (2019). Influence of bone meal degelatinisation and calcium source and particle size on broiler performance, bone characteristics and digestive and plasma alkaline phosphatase activity. British Poultry Science, 60, 297-308. https://doi.org/10.1080/00071668.2019.1587151.
Cowieson, A. J., Acamovic, T., & Bedford, M. R. (2004). The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. British Poultry Science, 45, 101-08. https://doi.org/10.1080/00071660410001668923.
Cowieson, A. J., Acamovic, T., & Bedford. M. R. (2006) Supplementation of corn–soy-based diets with an Eschericia coli-derived phytase: Effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poultry Science, 85, 1389-97. https://doi.org/10.1093/ps/85.8.1389.
Cuevas, A. C., González, E. A., Coello, C. L., & Menocal, J. A. (2019). Phosphorus bioavailability, amino acid digestibility and metabolizable energy of broiler chick diets supplemented with low-oil distiller’s dried grains with solubles. Veterinaria México, 6, 40-51.
Dilger, R. N., Onyango, E. M., Sands, J. S., & Adeola, O. (2004). Evaluation of microbial phytase in broiler diets. Poultry Science, 83, 962-70. https://doi.org/10.1093/ps/83.6.962.
Efranji, S., Sedghi, M., Mahdavi, A. H., & Abdollahi, M. R. (2022). Effects of feed physical form and insoluble fiber during different rearing periods on productive performance, immune response, behavior, tibia indices and gastrointestinal alterations of W-36 laying pullets. Poultry Science Journal, 10, 111-27.
Emami, N., Khodambashi, S., Naeini, Z., & Ruiz-Feria, C. A. (2013). Growth performance, digestibility, immune response and intestinal morphology of male broilers fed phosphorus deficient diets supplemented with microbial phytase and organic acids. Livestock Science, 157, 506-13. https://doi.org/10.1016/j.livsci.2013.08.014
Fenton, T. W., & Fenton, M. (1979). An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science, 59, 631-34. https://doi.org/10.4141/cjas79-081
Haug, Wolfgang, & Hans‐Joachim Lantzsch. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34: 1423-26. https://doi.org/10.1002/jsfa.2740341217
Imari, Zeyad k., Hassanabadi, A. & Nassiri Moghaddam, H. (2020). Response of broiler chickens to calcium and phosphorus restriction: Effects on growth performance, carcase traits, tibia characteristics and total tract retention of nutrients. Italian Journal of Animal Science, 19: 929-. https://doi.org/10.1080/1828051X.2020.1808101
Kocabagli, NEŞE. (2001). The effect of dietary phytase supplementation at different levels on tibial bone characteristics and strength in broilers. Turkish Journal of Veterinary & Animal Sciences, 25: 797-802.
Li, T., Guanzhong X., Yuxin S., Liyang Z., Sufen Li, Lin Lu, Zongping L., Xiudong L., & Xugang L. (2020). Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poultry Science, 99: 3207-14. https://doi.org/10.1016/j.psj.2020.01.028.
Li, X, Zhang, D. & Bryden, W. L. (2017). Calcium and phosphorus metabolism and nutrition of poultry: are current diets formulated in excess? Animal Production Science, 57: 2304-10.
Li, Xiuhua, Zhang, D. Tsung, Y. & Wayne, L. (2016). Phosphorus bioavailability: a key aspect for conserving this critical animal feed resource with reference to broiler nutrition. Agriculture, 6: 25. https://doi.org/10.3390/agriculture6020025.
Lim T. C., Eric, Mamat H. Kamalludin, Faez F. Abdullah J., Mohd Farhan, H. R., Teck C., & Zulkifli, I. (2019). Effect of Monocalcium Phosphate Supplementation on the Growth Performance, Carcass Characteristic, Gut Histomorphology, Meat and Bone Quality of Broiler Chickens. Pertanika Journal of Tropical Agricultural Science, 42.
Liu, J.B., Chen, D. W. & Adeola, O. (2013). Phosphorus digestibility response of broiler chickens to dietary calcium-to-phosphorus ratios. Poultry Science, 92: 1572-78. https://doi.org/10.3382/ps.2012-02758.
Matin, N, Utterback, P. L. & Parsons, C. M. (2021). Phosphorus digestibility and relative phosphorus bioavailability in two dried black soldier fly larvae meals and a defatted black soldier fly larvae meal in broiler chickens. Poultry Science, 100: 101221. https://doi.org/10.1016/j.psj.2021.101221.
Mutuş, R., Neşe Kocabağli, Müjdat Alp, NÜKET Acar, MUSTAFA Eren, & ŞŞ Gezen. (2006). The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poultry Science, 85, 1621-25. https://doi.org/10.1093/ps/85.9.1621.
Nari, N., Ghasemi, H. A., Hajkhodadadi, I., & Khaltabadi Farahani, A. H. (2020). Intestinal microbial ecology, immune response, stress indicators, and gut morphology of male broiler chickens fed low-phosphorus diets supplemented with phytase, butyric acid, or Saccharomyces boulardii. Livestock Science, 234, 103975. https://doi.org/10.1016/j.livsci.2020.103975.
Onyango, E. M., Hester, P. Y., Stroshine, R., & Adeola, O. (2003). Bone densitometry as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poultry Science, 82, 1787-91. https://doi.org/10.1093/ps/82.11.1787
Pieniazek, J., Smith, K. A., Williams, M. P., Manangi, M. K., Vazquez-Anon, M., Solbak, A., Miller, M., & Lee, J. T. (2017). Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poultry Science, 96, 370-82. https://doi.org/10.3382/ps/pew225
Riesenfeld, A. (1972). Metatarsal robusticity in bipedal rats. American Journal of Physical Anthropology, 36, 229-33. https://doi.org/10.1002/ajpa.1330360211
Rousseau, X., Anne-Sophie, V., Marie-Pierre, L. M., Nathalie, M., Estelle, G., Michel, M., Yves, N., Michel, J. D., & Agnès, N. (2016). Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poultry Science, 95, 2849-60. https://doi.org/10.3382/ps/pew172
Sedghi, M., Sarrami, Z., Ghasemi, R., & Abbasi, M. (2023). Replacing dicalcium phosphate with bone ash in broiler diets and its effect on performance. Second International Congress of Animal Sciences of Iran, University of Tehran, Tehran, Iran. https://iransascongress.com (In Persian).
Simons, P. C. M., Versteegh, H. A. J., &Van der Klis, J. D. (1991). De beschikbaarheid van fosfor voor slachtkuikens in voederfosfaten en in dierlijke veevoedergrondstoffen. Verslag, 93.
Suttle, Neville, F. (2010). The mineral nutrition of livestock-4-th ed. Wallingford, Oxfordshire: CABI Publishing.
Valable, A. S., Agnès N., Jacques Duclos, M., Pomar, C., Page, G., Nasir, C., Magnin, M., & Létourneau-Montminy, M. P. (2018). Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal, 12, 1555-63. https://doi.org/10.1017/S1751731117003093
Van Harn, J., Spek, J. W., Van Vuure, C. A., & Van Krimpen, M. M. (2017).'Determination of pre-cecal phosphorus digestibility of inorganic phosphates and bone meal products in broilers. Poultry Science, 96, 1334-40. https://doi.org/10.3382/ps/pew458
Walters, H. G., Coelho, M., Coufal, C. D., & Lee, J. T. (2019). Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. Journal of Applied Poultry Research, 28, 1210-25. https://doi.org/10.3382/japr/pfz087