تعداد نشریات | 50 |
تعداد شمارهها | 1,875 |
تعداد مقالات | 19,730 |
تعداد مشاهده مقاله | 12,574,114 |
تعداد دریافت فایل اصل مقاله | 7,704,570 |
Minimization of sub-topical functions over a simplex | ||
Iranian Journal of Numerical Analysis and Optimization | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 06 آبان 1402 | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22067/ijnao.2023.83361.1290 | ||
نویسندگان | ||
Mohammad Hossein Daryaei* ؛ Mohammad Ali Yaghoobi | ||
Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran. | ||
چکیده | ||
This article investigates a particular version of the cutting angle method for finding the global minimizer of sub-topical (increasing and plus sub-homogeneous) functions over a simplex. The cutting angle method is a powerful technique that can solve a wide range of global optimization problems based on abstract convexity. This method was proposed in 1999 as a method of global Lipschitz optimization and is a deterministic global optimization technique that involves constructing a sequence of lower approximations to an objective function. The algorithm in this paper is based on the abstract convexity of sub-topical functions. Furthermore, we discuss the proof of convergence of the algorithm and provide results from numerical experiments. | ||
کلیدواژهها | ||
Abstract convexity؛ Global optimization؛ Sub-topical functions؛ Cutting angle method | ||
آمار تعداد مشاهده مقاله: 25 |