بررسی تاثیر بهینه سازی پوسته خارجی و جدار نورگذر بر کاهش مصرف انرژی و زمان بازگشت سرمایه ساختمان های آموزشی در اقلیم معتدل با تابستانهای خشک و بسیار گرم
علوم کاربردی و محاسباتی در مکانیک
مقاله 3 ، دوره 36، شماره 1 - شماره پیاپی 35 ، اردیبهشت 1403، صفحه 41-60 اصل مقاله (1.8 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jacsm.2023.81531.1175
نویسندگان
امیر یاری نژاد 1 ؛ عباس مهروان* 2
1 گروه معماری، دانشکده فنی و مهندسی، دانشگاه رازی ، کرمانشاه ، ایران
2 گروه معماری، دانشکده فنی مهندسی، دانشگاه رازی، کرمانشاه، ایران
چکیده
محیط داخلی راحت برای سلامتی، عملکرد و بازدهی تحصیلی دانشآموزان در مدارس ضروری میباشد. میزان بالای مصرف انرژی جهت تامین شرایط آسایش محیطی در ساختمان های آموزشی ایران، این ساختمانها را با مصرف انرژی بیش از 160 کیلووات ساعت بر مترمربع در زمره بزرگترین مصرف کنندگان بخش انرژی قرار داده است و نیاز به کاهش مصرف انرژی در این بخش از طریق راهکارهای همساز با محیط زیست ضروریست. هدف این تحقیق کاهش مصرف انرژی و تامین شرایط آسایش در ساختمانهای آموزشی از طریق ایجاد تغییرات در لایهبندی عناصر پوسته ساختمان شامل دیوارها و جدارهای نور گذر به عنوان یک راهکار ترکیبی ایستا است. روش تحقیق در این مطالعه بهصورت کمی و مدلسازی از طریق استفاده از نرمافزار دیزاین بیلدر میباشد و به بررسی وضع موجود و بهینهسازی انرژی ساختمان با متغیرهای؛ نوع عایق، ضخامت عایق حرارتی دیوار ها، لایهبندی عایق، نوع و ضخامت شیشه، گازهای مابین جدار، ضخامت جدارها پرداخته شد. نتایج نشان داد که در ساختمان موردمطالعه استفاده از عایق پلیاورتان در داخلیترین لایه (پشت گچ نازککاری) کلاس درسهای جنوبی و شمالی باضخامت 10 سانتیمتر بهینهترین عملکرد را داشته است. همچنین در کلاس درس شمالی جدار نور گذر 2 جداره با شیشه کم گسیل با ضخامت شیشه 3 میلیمتر و 13 میلیمتر گاز آرگون با 28.40 درصد کاهش مصرف انرژی و همچنین در کلاس درس جنوبی با پنجره های با جدار نور گذر 3 جداره و شیشه معمولی 3 میلیمتر و 13 میلیمتر هوا 23.04 درصد کاهش مصرف انرژی مناسبترین عملکرد را در بین سایر پیکربندیها را داشته است.
کلیدواژهها
کلیدواژه: مصرف انرژی ؛ بهینهسازی انرژی ؛ عملکرد حرارتی مدارس ؛ عایقکاری حرارتی
مراجع
[1] E. Solgi, S. Memarian, and G. Nemati Moud, “Financial viability of PCMs in countries with low energy cost: A case study of different climates in Iran,” Energy and Buildings , vol. 173, pp. 128-137, 2018. https://doi.org/10.1016/j.enbuild.2018.05.028
[2] J. Han, J. Miao, Y. Shi, Z.Miao, “Can the semi-urbanization of population promote or inhibit the improvement of energy efficiency in China?” Sustainable Production and Consumption , vol. 26 ,pp. 921-932, (2021).
[3] E. Rodrigues, N. Azimi Fereidani, M. S. Fernandes, and A. R. Gaspar, “Climate change and ideal thermal transmittance of residential buildings in Iran,” Journal of Building Engineering , vol. 74, pp. 106919, (2023).
[4] S. Saihi, M. Faizi, and F. M. Saradj, “Prioritization of Façade Retrofit Measures to Achieve Energy Efficiency in Existing Office Buildings in Tehran,” Manzar , vol. 14, no. 59, pp. 30-39, (2022). (In Persian ) https://doi.org/10.22034/manzar.2021.312873.2163
[5]. A. Khani, M. Khakzand, M. Faizi, “Multi-objective optimization for energy consumption, visual and thermal comfort performance of educational building (case study: Qeshm Island, Iran),” Sustainable Energy Technologies and Assessments , vol. 54, p 102872, (2022).
[6] S. Zahiri, H. Altan, “Improving energy efficiency of school buildings during winter season using passive design strategies,” Sust. Build , vol. 5, p. 1, (2020).
[7] M. Tahsildoost, Z.S. Zomorodian, “Energy retrofit techniques: An experimental study of two typical school buildings in Tehran,” Energy and Buildings , vol. 104, p. 65-72, (2015).
[8] Q. Al-Yasiri, M. Szabó, “Experimental study of PCM-enhanced building envelope towards energy-saving and decarbonisation in a severe hot climate,” Energy and Buildings , vol. 279, p. 112680, (2023).
[9] F. Fazlikhani, H. Goudarzi, E. Solgi, “Numerical analysis of the efficiency of earth to air heat exchange systems in cold and hot-arid climates,” Energy Conversion and Management , vol. 148, p. 78-89, (2017).
[10] F. Babich, G. Torriani., J. Corona, I. Lara-Ibeas, “Comparison of indoor air quality and thermal comfort standards and variations in exceedance for school buildings,” Journal of Building Engineering , vol. 71, p. 106405, (2023).
[11] M. K. Singh, R. O, Ooka, H. B. Rijal, S.Kumar, A. Kumar, S. Mahapatra, “Progress in thermal comfort studies in classrooms over last 50 years and way forward,” Energy and Buildings , vol. 188-189, p. 149-174, (2019).
[12] A. Zhang, R. Bokel, A. V. Dobbelelsteen, Y. Sun, Q. Hunang, Q. Zhang, “Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China,” Energy and Buildings , vol. 139, pp. 371-384, (2017).
[13] M. K. Singh, S. Kumar, R. Ooka, H. B. Rijal, G. Gupta, A. Kumar, “Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India,” Building and Environment, vol. 128, pp. 287-304, (2017).
[14]https://worldgbc.org/article/earth-day-why-the-quality-of-educational-environments-affects-the-quality-of-learning-inside-them/
[15] S. A. Churchill, R. Smyth, “Energy poverty and health: Panel data evidence from Australia. Energy economics,” Energy Economics , vol. 97, p. 105219, (2021).
[16] R. Bentley, L. Daniel, Y.Li, E. Baker, A. Li, “The effect of energy poverty on mental health, cardiovascular disease and respiratory health: a longitudinal analysis,” The Lancet Regional Health–Western Pacific , vol. 35, (2023).
[17] W. Zeiler, G. Boxem, “Effects of thermal activated building systems in schools on thermal comfort in winter,” Building and Environment , vol. 44, no. 11, pp. 2308-2317, (2009).
[18] H. Zhang, K. Hewage, H. Karunathilake, H. Feng, R. Sadiq, “Research on policy strategies for implementing energy retrofits in the residential buildings,” Journal of Building Engineering , vol. 43, p. 103161, (2021).
[19] E. Parliament, “REPORT on the proposal for a directive of the European Parliament and of the Council amending directive 2010/31/EU on the energy performance of buildings,” (2017).
[20] G. O. Canada, “Energy, Greenhouse Gas Emissions, Natural resources Canada,” (2021).
[21] A. Charles, W. Maref, C.M. Ouellet-Plamondon, “Case study of the upgrade of an existing office building for low energy consumption and low carbon emissions,” Energy and Buildings , vol. 183, pp. 151-160, (2019).
[22] B. P. Munoz, B. Peuportier, L. Gracia-Villa “Sustainability assessment of refurbishment vs. new constructions by means of LCA and durability-based estimations of buildings lifespans: A new approach,” Building and Environment , vol. 160, p. 106203, (2019).
[23] R. Ruparathna, K. Hewage, and R. Sadiq, “Rethinking investment planning and optimizing net zero emission buildings,” Clean Technologies and Environmental Policy , vol. 19, no. 6, pp. 1711-1724, (2017).
[24] H. Jang, L. Jones, J. Kang, “Prioritisation of old apartment buildings for energy-efficient refurbishment based on the effects of building features on energy consumption in South Korea,” Energy and Buildings ,. vol. 96, pp. 319-328, (2015).
[25] P. Jie, F. Zhang, Z. Fang. H. Wang, Y. Zhao, “Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions,” Energy , vol. 159, pp. 1132-1147, (2018).
[26] A. Tabadkani, S. Banihashemi, M. R. Hosseini, “Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis,” Building Simulation . vol. 11, no. 4, pp. 663-676, (2018).
[27] S. Ni, N. Zhu, Y. Hou, Z. Zhang, “Research on indoor thermal comfort and energy consumption of zero energy wooden structure buildings in severe cold zone,” Journal of Building Engineering , vol. 67, p. 105965, (2023).
[28] S. E. Sadati, N. Rahbar, H. Kargarsharifabad, “Energy assessment, economic analysis, and environmental study of an Iranian building: The effect of wall materials and climatic conditions,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103093, (2023).
[29] Y. Yousefi,. “Energy efficiency in educational buildings in Iran: Analysis and measures,” in Proceedings , (2015).
[30] Congedo, P.M.A.U.D.A.D.B.C.T.G.Z.I.E.S. and B. “Cost-Optimal Analysis for Existing School Energies, ” (2016). 9, DOI: 10.3390/en9100851.
[31] V. Gupta, C. Deb, “Envelope design for low-energy buildings in the tropics: A review,” Renewable and Sustainable Energy Reviews , vol. 186, pp. 113650, (2023).
[32] M. C. Katafygiotou, D. K. Serghides, “Analysis of structural elements and energy consumption of school building stock in Cyprus: Energy simulations and upgrade scenarios of a typical school,” Energy and Buildings , vol. 72, pp. 8-16, (2014).
[33] M. Alwetaishi, A. Taki, “Investigation into energy performance of a school building in a hot climate: Optimum of window-to-wall ratio,” Indoor and Built Environment , vol. 29, no.1, pp. 24-39 (2019).
[34] J. H. Park, B. Y. Yun, S. J. Chang, S. Wi, J. Jeon, S. Kim “Impact of a passive retrofit shading system on educational building to improve thermal comfort and energy consumption,” Energy and Buildings, vol. 216, p. 109930 (2020).
[35] M. Jradi, C. Veje, B.N. Jørgensen, “Deep energy renovation of the Mærsk office building in Denmark using a holistic design approach,” Energy and Buildings , vol. 151, pp. 306-319 (2017).
[36] Raji, B., Martin J. Tenpierik, Andy Van den Dobbelsteen Early-Stage Design “Considerations for the Energy-Efficiency of High-Rise Office Buildings,” Sustainability , DOI: 10.3390/su9040623, (2017).
[37] K. EL-DEEB, “Combined Effect Of Window-To-Wall Ratio And Wall Composition On Energy Consumption,” in PLEA, (2013).
[38] Amiri Fard, R., M. Thaghafi, and M. Tahbaz, “Investigating the simultaneous effect of the percentage of transparent surfaces and orientation according to the energy consumption of schools in the temperate and humid climate of Iran. Soffeh”, vol. 30, no. 4: pp. 49-65, (2021).
[39] J. S. Carlos, H. Corvacho, “Retrofit measures in old elementary school buildings towards energy efficiency,” Journal of Civil Engineering and Management , vol. 16, no. 4, pp. 567-576, (2010).
[40] B. Basarir, B.S. Diri, C. Diri, “Energy efficient retrofit methods at the building envelopes of the school buildings,” Retrieved, vol. 10, no. 12, p. 2016, (2012).
[41] L. de Santoli, L., F. Fraticelli, F. Fornari, C. Calice, “Energy performance assessment and a retrofit strategies in public school buildings in Rome,” Energy and Buildings , vol. 68, pp. 196-202, (2014).
[42] M. Zinzi, S. Agnoli, G. Battisini, G. Bernabini, “Retrofit of an Existing School in Italy with High Energy Standards,” Energy Procedia , vol. 48, pp. 1529-1538, (2014).
[43] F. Ascione, N. Bianco, R. F. De Masi, F. Rossi, G. P. Vanoli, “Energy retrofit of an educational building in the ancient center of Benevento. Feasibility study of energy savings and respect of the historical value,” Energy and Buildings , vol. 95, pp. 172-183, (2015).
[44] S. Ostojić, Z. Veršić, I. Muraj, “Energy analysis and refurbishment strategy for Zagreb University buildings: Former Faculty of Technology in Zagreb by Alfred Albini,” Energy and Buildings , vol.115, pp. 47-54, (2016).
[45] H. Erhorn-Kluttig, O. Mørck, “Energy-efficient renovation of educational buildings,” (2005).
[46] McKnight, T. and D. Hess, “Climate zones and types. physical geography: a landscape appreciation. NJ: Prentice Hall, ” pp. 205-208, (2000):
[47] T. Raziei, “Climate of Iran according to Köppen-Geiger, Feddema, and UNEP climate classification,” Theoretical and Applied Climatology , vol. 148, no. 3, pp. 1395-1416, (2022).
آمار
تعداد مشاهده مقاله: 880
تعداد دریافت فایل اصل مقاله: 560