- Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richer-de-Forges, A.C., Morgan, C.L., & Mulder, V.L. (2020). Impressions of digital soil maps: The good, the not so good, and making them ever better. Geoderma Regional, 20, e00255. https://doi.org/10.1016/j.geodrs.2020.e00255
- Azizi, K., Garosi, Y., Ayoubi, S., & Tajik, S. (2023). Integration of Sentinel-1/2 and topographic attributes to predict the spatial distribution of soil texture fractions in some agricultural soils of western Iran. Soil and Tillage Research, 229, 105681. https://doi.org/10.1016/j.still.2023.105681
- Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Bi, D., Li, Y.F., Tso, S.K., & Wang, G.L. (2004). Friction modeling and compensation for haptic display based on support vector machine. IEEE Transactions on Industrial Electronics, 51(2), 491-500. https://doi.org/10.1109/ TIE.2004.825277
- Dharumarajan, S., & Hegde, R. (2022). Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use and Management, 38(1), 135-149. https://doi.org/10.1111/sum.12668
- de Jesus Duarte, S., Glaser, B., & Pellegrino Cerri, C.E. (2019). Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy, 9(4), 165. https://doi.org/ 10.3390/agronomy9040165
- Chen, T.L., Shi, Z.L., Wen, A.B., Yan, D.C., Guo, J., Chen, J.C., & Chen, R.Y. (2021). Multifractal characteristics and spatial variability of soil particle-size distribution in different land use patterns in a small catchment of the Three Gorges Reservoir Region, China. Journal of Mountain Science, 18(1), 111-125. https://doi.org/10.1007/s11629-020-6112-5
- Chen, Y., Ma, L., Yu, D., Zhang, H., Feng, K., Wang, X., & Song, J. (2022). Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators, 135, 108545. https://doi.org/10.1016/j.ecolind.2022.108545
- Faé, G.S., Montes, F., Bazilevskaya, E., Añó, R.M., & Kemanian, A.R. (2019). Making soil particle size analysis by laser diffraction compatible with standard soil texture determination methods. Soil Science Society of America Journal, 83(4), 1244-1252. http://doi.org/10.2136/sssaj2018.10.0385
- Friedman, J.H., & Meulman, J.J. (2003). Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22(9), 1365-1381. https://doi.org/10.1002/sim.1501
- Gessler, P.E., Chadwick, O.A., Chamran, F., Althouse, L., & Holmes, K. (2000). Modeling soil–landscape and ecosystem properties using terrain attributes. Soil Science Society of America Journal, 64(6), 2046-2056. https://doi.org/10.2136/sssaj2000.6462046x
- Geology.com/news/2010/freelansatimages-from-USGS-2. http://glovis.usgs.gov.
- Gomes, L.C., Faria, R.M., de Souza, E., Veloso, G.V., Schaefer, C.E.G., & Fernandes Filho, E.I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337-350. https://doi.org/10.1016/j.geoderma .2019.01.007
- Hengl, T., Mendes de Jesus, J., Heuvelink, G.B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748
- Hossain, M.S., Rahman, G.M., Alam, M.S., Rahman, M.M., Solaiman, A.R.M., & Mia, M.B. (2018). Modelling of soil texture and its verification with related soil properties. Soil Research, 56(4), 421-428. https://doi.org/10.1071/ sr17252
- Jenny, H. (1994). Factors of soil formation: a system of quantitative pedology. Courier Corporation.
- John, K., Abraham Isong, I., Michael Kebonye, N., Okon Ayito, E., Chapman Agyeman, P., & Marcus Afu, S. (2020). Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. Land, 9(12), 487. https://doi.org/10.3390/land9120487
- Kaya, F., & Başayiğit, L. (2022). Spatial prediction and digital mapping of soil texture classes in a Floodplain using multinomial Logistic regression. In Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation: Proceedings of the INFUS 2021 Conference, held August 24-26, 2021. Volume 2(pp. 463-473). Springer International Publishing. https://doi.org/10.1007/978-3-030-85577-2_55.
- Khosravani, P., Baghernejad, M., Moosavi, A.A., & FallahShamsi, S.R. (2023). Digital mapping to extrapolate the selected soil fertility attributes in calcareous soils of a semiarid region in Iran. Journal of Soils and Sediments, 23(11), 4032-4054. https://doi.org/10.1007/s11368-023-03548-1
- Khosravani, P., Baghernejad, M., Moosavi, A.A., & Rezaei, M. (2023). Digital mapping and spatial modeling of some soil physical and mechanical properties in a semi-arid region of Iran. Environmental Monitoring and Assessment, 195(11), 1367. https://doi.org/10.1007/s10661-023-11980-6
- Lee, S., Baek, W.K., Jung, H.S., & Lee, S. (2020). Susceptibility mapping on urban landslides using deep learning approaches in Mt. Umyeon. Applied Sciences, 10(22), 8189. https://doi.org/10.3390/app10228189
- Loiseau, T., Chen, S., Mulder, V.L., Dobarco, M.R., Richer-de-Forges, A.C., Lehmann, S., ... & Arrouays, D. (2019). Satellite data integration for soil clay content modelling at a national scale. International Journal of Applied Earth Observation and Geoinformation, 82, 101905. https://doi.org/10.1016/j.jag.2019.101905
- Lucas, M., Schlüter, S., Vogel, H.J., & Vetterlein, D. (2019). Soil structure formation along an agricultural chronosequence. Geoderma, 350, 61-72. https://doi.org/10.1016/j.geoderma.2019.04.041
- Ma, Y., Minasny, B., Malone, B.P., & Mcbratney, A.B. (2019). Pedology and digital soil mapping (DSM). European Journal of Soil Science, 70(2), 216-235. https://doi.org/10.1111/ejss.12790.
- Mahler, P.J. (1970). Manual of Multipurpose Land Classification. Report no. 212. Soil and Water Research Institute, Tehran. Iran. (In Persian)
- Mahmoudzadeh, H., Matinfar, H. R., Taghizadeh-Mehrjardi, R., Kerry, R. (2020). Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional, 21, e00260. https://doi.org/10.1016/j.geodrs.2020.e00260
- Maleki, S., Karimi, A., Mousavi, A., Kerry, R., & Taghizadeh-Mehrjardi, R. (2023). Delineation of soil management zone maps at the regional scale using machine learning. Agronomy, 13(2), 445. https://doi.org/10.3390/agronomy 13020445
- Malone, B., & Searle, R. (2021). Updating the Australian digital soil texture mapping (Part 1*): re-calibration of field soil texture class centroids and description of a field soil texture conversion algorithm. Soil Research, 59(5), 419-434. https://doi.org/10.1071/SR20283
- McBratney, A.B., Santos, M.M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3-52. https://doi.org/10.1016/S0016-7061(03)00223-4
- Minasny, B., & McBratney, A.B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & geosciences, 32(9), 1378-1388.https://doi.org/10.1016/j.cageo.2005.12.009
- Mosleh, Z., Salehi, M. H., Jafari, A., Borujeni, I.E., & Mehnatkesh, A. (2016). The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring and Assessment, 188, 1-13. https://doi.org/10.1007/s10661-016-5204-8
- Mousavi, S.R., Sarmadian, F., Omid, M., & Bogaert, P. (2021). Digital modeling of three-dimensional soil salinity variation using machine learning algorithms in arid and semi-arid lands of Qazvin Plain. Iranian Journal of Soil and Water Research, 52(7), 1915-1929. https://doi.org/10.22059/ijswr.2021.323030.668957
- Mousavi, S.R., Sarmadian, F., Angelini, M.E., Bogaert, P., & Omid, M. (2023). Cause-effect relationships using structural equation modeling for soil properties in arid and semi-arid regions. Catena, 232, 107392. https://doi.org/ 10.1016/j.catena.2023.107392
- Mousavi, S.R., Parsayi, F., Rahmani, A., Sedri, M.H., & Kohsar Bostani, M. (2020). Spatial prediction some of the surface soil properties using interpolation and machine learning models. Journal of Soil Management and Sustainable Production, 10(3), 27-49. (In Persian with English abstract). https://doi.org/10.22069/EJSMS .2021.17251.1916
- Mousavi, S.R., Sarmadian, F., Rahmani, A., & Khamoshi, S.E. (2019). Digital soil mapping with regression tree classification approaches by RS and geomorphometry covariate in the Qazvin Plain, Iran. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 773-777.
- Ließ, M., Glaser, B., & Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models. Geoderma, 170, 70-79. https://doi.org/10.1016/j.geoderma.2011.10.010
- Organization of Geology and Mineral Explorations of Ira, (1995). Geology map (1:100000) scale. Marvdasht, Fars,
- Ostovari, Y., Moosavi, A.A., Mozaffari, H., & Pourghasemi, H.R. (2021). RUSLE model coupled with RS-GIS for soil erosion evaluation compared with T value in Southwest Iran. Arabian Journal of Geosciences, 14, 1-15. https:// doi.org/10.1007/s12517-020-06405-4
- Olaya, V. I. C. T. O. R. . A gentle introduction to SAGA GIS. The SAGA User Group eV, Gottingen, Germany, 208.
- Padarian, J., Minasny, B., & McBratney, A.B. (2019). Machine learning and soil sciences: A review aided by machine learning tools. SOIL, 6, 35-52. https://doi.org/10.5194/soil-6-35-2020.
- Pahlavan-Rad, M.R., & Akbarimoghaddam, A. (2018). Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). Catena, 160, 275-281. https://doi.org/10.1016/j.catena.2017.10.002
- Paramasivam, C.R. (2019). Merits and demerits of GIS and geostatistical techniques. GIS and Geostatistical Techniques for Groundwater Science, 17-21.
- Poppiel, R.R., Lacerda, M.P., Demattê, J.A., Oliveira Jr, M.P., Gallo, B.C., & Safanelli, J.L. (2019). Pedology and soil class mapping from proximal and remote sensed data. Geoderma, 348, 189-206. https://doi.org/10.1016/ j.geoderma.2019.04.028
- Parent, E.J., Parent, S.É., & Parent, L.E. (2021). Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling. Plos One, 16(7), e0233242. https://doi.org/10.1371/journal.pone.0233242
- Radočaj, D., Jurišić, M., Antonić, O., Šiljeg, A., Cukrov, N., Rapčan, I., Plaščak, I., & Gašparović, M. (2022). A multiscale cost–benefit analysis of digital soil mapping methods for sustainable land management. Sustainability, 14(19), 12170. https://doi.org/10.3390/su141912170
- Riza, S., Sekine, M., Kanno, A., Yamamoto, K., Imai, T., & Higuchi, T. (2021). Modeling soil landscapes and soil textures using hyperscale terrain attributes. Geoderma, 402, 115177.
- Rossel, R.V., & McBratney, A.B. (2008). Diffuse reflectance spectroscopy as a tool for digital soil mapping. In Digital soil mapping with limited data(pp. 165-172). Dordrecht: Springer Netherlands. https://doi.org/ 10.1007/978-1-4020-8592-5_13.
- Sahraei, N., Landi, A., & Hojati, S. (2022). Digital mapping of soil texture components in part of Khuzestan plain lands using machine learning models. Iranian Journal of Soil and Water Research, 53(10), 2261-2276. https://doi.org/ 10.22059/ijswr.2022.348442.669360
- Shahriari, M., Delbari, M., Afrasiab, P., & Pahlavan-Rad, M.R. (2019). Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: A case of southeastern Iran. Catena, 182, 104149. https://doi.org/10.1016/j.catena.2019.104149
- Sahraei, N., Landi, A., & Hojati, S. (2022). Digital mapping of soil texture components in part of Khuzestan plain lands using machine learning models. Iranian Journal of Soil and Water Research, 53(10), 2261-2276. (In Persian with English abstract). https://doi.org/10.22059/ijswr.2022.348442.669360
- Sørensen, H. (2004). RPD revisited – a mean to distinguish between poor and good predictions. Journal of Near Infrared Spectroscopy, 12(6), 321-327.
- Swain, S.R., Chakraborty, P., Panigrahi, N., Vasava, H.B., Reddy, N.N., Roy, S., Majeed, I., & Das, B.S. (2021). Estimation of soil texture using Sentinel-2 multispectral imaging data: An ensemble modeling approach. Soil and Tillage Research, 213, 105134. https://doi.org/10.1016/j.still.2021.105134
- Taghizadeh‐Mehrjardi, R., Toomanian, N., Khavaninzadeh, A. R., Jafari, A., & Triantafilis, J. (2016). Predicting and mapping of soil particle‐size fractions with adaptive neuro‐fuzzy inference and ant colony optimization in central I ran. European Journal of Soil Science, 67(6), 707-725. https://doi.org/10.1111/ejss.12382
- Tashayo, B., Honarbakhsh, A., Akbari, M. & Eftekhari, M. (2020). Land suitability assessment for maize farming using a GIS-AHP method for a semi-arid region, Iran. Journal of the Saudi Society of Agricultural Sciences, 19(5), 332-338. https://doi.org/10.1016/j.jssas.2020.03.003
- Tümsavaş, Z., Tekin, Y., Ulusoy, Y., & Mouazen, A.M. (2019). Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosystems Engineering, 177, 90-100. https://doi.org/ 10.1016/j.biosystemseng.2018.06.008
- Wadoux, A.M.C., Minasny, B., & McBratney, A.B. (2020). Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210, 103359. https://doi.org/10.1016/j.earscirev. 2020.103359
- Wallach, D., Makowski, D., Jones, J.W., & Brun, F. (2006). Working with dynamic crop models: evaluation, analysis, parameterization, and applications. Elsevier.
- Wang, Z., Shi, W., Zhou, W., Li, X., & Yue, T. (2020). Comparison of additive and isometric log-ratio transformations combined with machine learning and regression kriging models for mapping soil particle size fractions. Geoderma, 365, 114214. https://doi.org/10.1016/j.geoderma.2020.114214
- Wilding, L.P. (1985). Spatial variability: its documentation, accommodation and implication to soil surveys. In: Soil Spatial Variability, Las Vegas NV, pp. 166–194.
- Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., & Finke, P. (2019). Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 338, 445-452. https://doi.org/ 10.1016/j.geoderma.2018.09.006
- Ziadat, F.M., 2005. Analyzing digital terrain attributes to predict soil attributes for a relatively large area. Soil Science Society of America Journal, 69, 1590–1599. https://doi.org/10.2136/sssaj2003.0264
- Zinck, J.A., Metternicht, G., Bocco, G., & Del Valle, H.F. (2015). Geopedology: An integration of geomorphology and pedology for soil and landscape studies. Springer.
- Zhang, Y.Y., Wu, W., & Liu, H. (2019). Factors affecting variations of soil pH in different horizons in hilly regions. Plos One, 14(6), e0218563. https://doi.org/10.1371/journal.pone.0218563
- Zhang, X., Zhang, W.C., Wu, W., & Liu, H.B. (2023). Horizontal and vertical variation of soil clay content and its controlling factors in China. Science of The Total Environment, 864, 161141.
|