- Adl, S.M., Acosta-Mercado, D., Anderson, T.R., & Lynn, D.H. (2006). Protozoa, supplementary material. Soil Sampling and Methods of Analysis, 2(1), 455-470.
- Aguilar-Fernández, R., Gavito, M.E., Peña-Claros, M., Pulleman, M., & Kuyper, T.W. (2020). Exploring linkages between supporting, regulating, and provisioning ecosystem services in rangelands in a tropical agro-forest frontier. Land, 9(12), 511. https://doi.org/10.3390/land9120511
- Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry (Issue 631.46 M592ma). Academic Press. https://doi.org/4236/ns.2012.41011
- Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amézaga, I., & Garbisu, C. (2003). Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health, 18(1), 65–73. https://doi.org/10.1515/REVEH. 2003.18.1.65
- Allison, L.E. (1975). Organic carbon. In: Black CA. Methods of soil analysis. American Society of Agronomy, Part, 2.
- Aminiyan, M.M., Sinegani, A.A.S., & Sheklabadi, M. (2015). Aggregation stability and organic carbon fraction in a soil amended with some plant residues, nanozeolite, and natural zeolite. International Journal of Recycling of Organic Waste in Agriculture, 4(1),11-22. https://doi.org/10.1007/s40093-014-0080-0
- Anderson, T.H., & Domsch, K.H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251-255. https://doi.org/ 10.1016/0038-0717(90)90094-G
- Arias Ortiz, A., Masqué Barri, P., Glass, L., Benson, L., Kennedy, H., Duarte, C.M., & Lovelock, C.E. (2020). Losses of soil organic carbon with deforestation in mangroves of Madagascar. 1-19. https://doi.org/10.1007/s10021-020-00500-z
- Asadu, C.L.A., Nwafor, I.A., & Chibuike, G.U. (2015). Contributions of microorganisms to soil fertility in adjacent forest, fallow and cultivated land use types in Nsukka, Nigeria. International Journal of Agriculture and Forestry, 5(3), 199-204. https://doi.org/10.5923/j.ijaf.20150503.04
- Augusto, L., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., & Ranger, J. (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews, 90(2), 444–466. https://doi.org/10.1111/brv.12119
- Azizi Mehr, M., Kooch, Y., & Hosseini, S.M. (2020). The effect of forest degradation intensity on the dynamics of soil microbial activities and biochemical in the plain region of Noshahr. Iranian Journal of Forest, 12(2), 175-188.
- Bayranvand, M., Kooch, Y., & Rey, A. (2017). Earthworm population and microbial activity temporal dynamics in a Caspian Hyrcanian mixed forest. European Journal of Forest Research, 136(3), 447-456. https://doi.org/10.1007/ s10342-017-1044-5
- Berg, B., & McClaugherty, C. (2008). Plant Litter Decomposition, Humus Formation, Carbon Sequestration. Second edition, Berlin: Springer Publication. https://doi.org/10.1007/978-3-642-38821-7
- Berkelmann, D., Schneider, D., Meryandini, A., & Daniel, R. (2020). Unravelling the effects of tropical land use conversion on the soil microbiome. Environmental Microbiome, 15(3), 178-185. https://doi.org/10.1186/s40793-020-0353-3
- Bini, D., Dos Santos, C.A., Bouillet, J.P., de Morais Goncalves, J.L., & Cardoso, E.J.B.N. (2013). Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Applied Soil Ecology, 63(4), 57-66. https://doi.org/10.1016/ j.apsoil.2012.09.012
- Birkhofer, K., Diekötter, T., Boch, S., Fischer, M., Müller, J., Socher, S., & Wolters, V. (2011). Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biology and Biochemistry, 43(10), 2200-2207. https://doi.org/10.1016/j.soilbio.2011.07.008
- Blake, G.R., & Hartge, K.H. (1986). Particle density. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. SSSA Book Ser. 5. ASA and SSSA, Madison, WI, 377–382.
- Blair, G.J., Lefroy, R.D., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459-1466.
- Bower, C.A., Reitemeier, R.F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73, 251-261.
- Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total total. In ‘Methods of Soil Analyses. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison, 595-624. https://doi.org/10.2134/ agronmonogr9.2.2ed.c31
- Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total (In: Methods of Soil Analysis, Part 2, Eds: RH Miller, RR Keeney).
- Brinkmann, N., Schneider, D., Sahner, J., Ballauff, J., Edy, N., Barus, H., Irawan, B., Budi, S.W., Qaim, M., Daniel, R., & Polle, A. (2019). Intensive tropical land use massively shifts soil fungal communities. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-39829-4
- Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
- Chapman, H.D., & Pratt, P.F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68. https:// doi.org/10.2136/sssaj1963.03615995002700010004x
- Chase, P., & Singh, O.P. (2014). Soil nutrients and fertility in three traditional land use systems of Khonoma, Nagaland, India. Resources and Environment, 4(4), 181-189. https://doi.org/10.5923/j.re.20140404.01
- Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., Cui, C., & Zhang, S. (2013). Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PloS One, 8(6), e67353. https://doi.org/10.1371/journal.pone.0067353
- Chi, Y., Shi, H., Wang, X., Qin, X., Zheng, W., & Peng, S. (2016). Impact factors identification of spatial heterogeneity of herbaceous plant diversity on five southern islands of Miaodao Archipelago in North China. Chinese Journal of Oceanology and Limnology, 34(5), 937-951. https://doi.org/10.1007/s00343-016-5111-4
- Day, A., & Chaudhur, P.S. (2014). Earthworm community structure of pineapple (Ananas comosus) plantations under monoculture and mixed culture in West Tripura, India. Tropical Ecology, 55(1), 1-17.
- Di Carlo, E., Chen, C.R., Haynes, R.J., Phillips, I.R., & Courtney, R. (2019). Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: a review. Soil Research, 57(5), 419–446. https://doi.org/10.1071/SR18348
- Elliott, E.T., & Cambardella, C.A. (1991). Physical separation of soil organic matter. Agriculture, Ecosystems & Environment, 34(1-4), 407-419. https://doi.org/10.1016/0167-8809(91)90124-G
- Erdmann, G., Scheu, S., & Maraun, M. (2012). Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari oribatida). Experimental and Applied Acarology, 57(2), 157-169. https://doi.org/ 10.1007/s10493-012-9546-9
- Fabíola Barros, M., Pinho, B.X., Leão, T., & Tabarelli, M. (2018). Soil attributes structure plant assemblages across an Atlantic forest mosaic. Journal of Plant Ecology, 11(4), 613-622. https://doi.org/10.1093/jpe/rtx037
- Fenetahun, Y., Yuan, Y., Xinwen, X., Fentahun, T., Nzabarinda, V., & Yong-dong, W. (2021). Impact of grazing intensity on soil properties in Teltele rangeland, Ethiopia. Frontiers Environmental Sciences, 9, 664104. https:// doi.org/10.3389/fenvs.2021.664104
- Ferreira, A.C.C., Leite, L.F.C., Araújo, A.S.F., & Eisenhauer, N. (2016). Land use type effects on soil organic Carbon and microbial properties in a semi-arid region of Northeast Brazil. Land Degradation and Development, 27(2), 171-178. https://doi.org/10.1002/ldr.2282
- Fouché, J., Christiansen, C.T., Lafrenière, M.J., Grogan, P., & Lamoureux, S.F. (2020). Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nature Communications, 11(1), 4500. https://doi.org/10.1038/s41467-020-18331-w
- Galindo, V., Giraldo, C., Lavelle, P., Armbrecht, I., & Fonte, S.J. (2022). Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere, 13(3), e3979. https://doi.org/10.1002/ecs2.3979
- Gharibreza, M., Zaman, M., Porto, P., Fulajtar, E., Parsaei, L., & Eisaei, H. (2020). Assessment of deforestation impact on soil erosion in loess formation using 137Cs method (case study: Golestan Province, Iran). International Soil and Water Conservation Research, 8(4), 393-405. https://doi.org/10.1016/j.iswcr.2020.07.006
- Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jingsong, Y., & Xiangping, W. (2017). Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems & Environment, 237, 274–279. https://doi.org/10.1016/j.agee.2017.01.004
- Guendehou, G.S., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., & Makipaa, R. (2014). Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology, 55, 207-220.
- Guillaume, T., Maranguit, D., Murtilaksono, K., & Kuzyakov, Y. (2016). Sensitivity and resistance of soil fertility indicators to land-use changes: new concept and examples from conversion of Indonesian rainforest to plantations. Ecological Indicators, 67(8), 49-57. https://doi.org/10.1016/j.ecolind.2016.02.039
- Haghdoost, N., Akbarinia, M., Hosseini, S.M., & Kooch, Y. (2011). Conversion of Hyrcanian degraded forests to plantations: Effects on soil C and N stocks. Annals of Biological Research, 50(2), 385-399.
- Hatton, P.J., Castanha, C., Torn, M.S., & Bird, J.A. (2015). Litter type control on soil C and N stabilization dynamics in a temperate forest. Global Change Biology, 21(3), 1358-1367. https://doi.org/10.1111/gcb.12786
- Hessen, D.O., Elser, J.J., Sterner, R.W., & Urabe, J. (2013). Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr, 58(6), 2219-2236. https://doi.org/10.4319/lo.2013.58.6.2219
- Heydari, M., Eslaminejad, P., Valizadeh Kakhki, F., Mirab-balou, M., Omidipour, R., Prévosto, B., Kooch, Y., & Lucas-Borja, M.E. (2020). Soil quality and mesofauna diversity relationship are modulated by woody species and seasonality in semiarid oak forest. Forest Ecology and Management, 473(10), 1-13. https://doi.org/10.1016/ j.foreco.2020.118332
- Jagadamma, S., Mayes, M.A., Steinweg, J.M., & Schaeffer, S.M. (2014). Substrate quality alters the microbial mineralization of added substrate and soil organic carbon. Biogeosciences, 11, 4665–4678. https://doi.org/10.5194/bg-11-4665-2014
- Jiao, S., Li, J., Li, Y., Xu, Z., Kong, B., Li, Y., & Shen, Y. (2020). Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta, China. Scientific Reports, 10(1), 20317.
- Jones, D.L., & Willett, V.B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38(5), 991–999. https://doi.org/10.1016/j.soilbio.2005.08.012
- Kemper, W.D., & Rosenau, R.C. (1986). Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17
- Kimmins, J.P. (1976). Evaluation of the consequences for future tree productivity of the loss of nutrients in whole-tree harvesting. Forest Ecology and Management, 1, 169-183. https://doi.org/10.1016/0378-1127(76)90019-0
- Klimek, B., & Niklińska, M. (2020). Fauna activity on soils developing on dead logs in an ancient inland temperate rainforest of North British Columbia (Canada). Journal of Soils and Sediments, 20(3), 2260–2265. https://doi.org/ 10.1007/s11368-019-02559-1
- Kooch, Y., & Ghaderi, E. (2023). The effect of Crataegus and Berberis canopy types on bioindicators of soil quality in a semi-arid climate. Journal of Arid Environments, 208, 104862. https://doi.org/10.1016/j.jaridenv.2022.104862
- Kooch, Y. )2012(. Soil variability related to pit and mound, canopy cover and individual trees in a Hyrcanian Oriental Beech stand. Ph.D. Thesis, Tarbiat Modares University, 203p.
- Kooch, Y., & Bayranvand, M. )2017(. Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests. Forest Ecology and Management, 401(10), 55-64. https://doi.org/10.1016/j.foreco. 2017.07.001
- Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193, 104621. https://doi.org/10.1016/j.catena.2020.104621
- Kooch, Y., Ehsani, S., & Akbarinia, M. (2020). Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil and Tillage Research, 200, 104621. https://doi.org/10.1016/j.still.2020.104621
- Kooch, Y., Ghorbanzadeh, N., Hajimirzaaghaee, S., & Francaviglia, R. (2023). Soil biological quality as affected by vegetation types in shrublands of a semi-arid montane environment. Applied Soil Ecology. 189. https://doi.org/ 10.1016/j.apsoil.2023.104980
- Kooch, Y., Rostayee, F., & Hosseini, S.M. (2016). Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena, 144, 65-73. https://doi.org/10.1016/j.catena. 2016.05.002
- Kooch, Y., Samadzadeh, B., & Hosseini, S.M. (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150(3), 223-229. https://doi.org/10.1016/j.catena.2016.11.023
- Kooch, Y., Tarighat, F.S., & Haghverdi, K. (2022). Effect of forest and non-forest land covers on soil organic matter, fulvic and humic acids. Ecology of Iranian Forest, 39–46.
- Korboulewsky, N., Perez, G., & Chauvat, M. (2016). How tree diversity affects soil fauna diversity: A review. Soil Biology and Biochemistry, 94(3), 94-106. https://doi.org/10.1016/j.soilbio.2015.11.024
- Kumari, M., Chakraborty, D., Gathala, M.K., Pathak, H., Dwivedi, B.S., Tomar, R.K., & Ladha, J.K. (2011). Soil aggregation and associated organic carbon fractions as affected by tillage in rice-wheat rotation in North India. Soil Science Society of America Journal, 75(2), 560-567. https://doi.org/10.2136/sssaj2010.0185
- Lazarova, S., Coyne, D., Rodríguez, M.G., Peteira, B., & Ciancio, A. (2021). Functional diversity of soil nematodes in relation to the impact of agriculture- a Review. Diversity, 13(2), 64. https://doi.org/10.3390/d13020064
- Lee, S.-H., Kim, M.-S., Kim, J.-G., & Kim, S.-O. (2020). Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability, 12(19), 8209. https://doi.org/10.3390/su12198209
- LeónD., & Osorio N.W. (2014). Role of litter turnover in soil quality in tropical degraded lands of Colombia. The Scientific World Journal, 2, 1-11. https://doi.org/10.1155/2014/693981
- Li, L., Vogel, J., He, Z., Zou, X., Ruan, H., Huang, W., Wang, J., & Bianchi, T.S. (2016). Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China. PloS One, 11(3), p.e0150898. https://doi.org/10.1371/journal.pone.0150898
- Li, M., Zhou, X., Zhang, Q., & Cheng, X. (2014). Consequences of afforestation for soil nitrogen dynamics in Central Agriculture, Ecosystems and Environment, 183(4), 40-46. https://doi.org/10.1016/j.agee.2013.10.018
- Liu, Y., Wang, S., Wang, Z., Zhang, Z., Qin, H., Wei, Z., Feng, K., Li, S., Wu, Y., Yin, H., Li, H., & Deng, Y. (2019). Soil microbiome mediated nutrients decline during forest degradation process. Soil Ecology Letters, 1(1-2), 59-71. https://doi.org/10.1007/s42832-019-0009-7
- Luo, G., Xue, C., Jiang, Q., Xiao, Y., Zhang, F., Guo, S., Shen, Q., & Ling, N. (2020). Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C: N: P stoichiometry. Msystems, 5(3), e00162-20. https://doi.org/10.1128/msystems.00162-20
- Mao, R., Zeng, D.H., Ai, G.Y., Yang, D., Li, L.J., & Liu, Y.X. (2010). Soil microbiological and chemical effects of a nitrogen-fixing shrub in poplar plantations in semi-arid region of Northeast China. European Journal of Soil Biology, 46(5), 325-329. https://doi.org/10.1016/j.ejsobi.2010.05.005
- Marcos, E., Calvo, L., Marcos, J.M., Taboada, A., & Tarrega, R. (2010). Tree effects on the chemical topsoil features of oak, beech and pine forests. European Journal of Forest Research, 129, 25–30. https://doi.org/10.1007/s10342-008-0248-0
- Matute, M.M. (2013). Soil nematodes of brassica rapa: influence of temperature and pH. Advances in Natural Science, 6(4), 20-26. https://doi.org/10.3968/j.ans.1715787020130604.2858
- Meyfroidt, P., Vu, T.P., & Hoang, V.A. (2013). Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central Highlands of Vietnam. Global Environmental Change, 23(5),1187-1198. https://doi.org/10.1016/j.gloenvcha.2013.04.005
- Miletić, Z., Knežević, M., Stajić, S., Košanin, O., & Đorđević, I. (2012). Effect of European black Alder monocultures on the characteristics of reclaimed mine soil. International Journal of Environmental Research, 6(3), 703-710.
- Mulia, R., Hoang, S.V., Dinh,V.M., Duong, N.B.T., Nguyen, A.D., Lam, D.H., Thi Hoang, D.T., & van Noordwijk, M. (2021). Earthworm diversity, forest conversion and agroforestry in Quang Nam Province, Vietnam. Land, 10(1), 10-36. https://doi.org/10.3390/land10010036
- Neatrour, M.A., Jones, R.H., & Golladay, S.W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research, 35(12), 2934–2941. https://doi.org/10.1139/x05-217
- Neher, D., Wu, J., Barbercheck, M., & Anas, O. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30(1), 47-64. https://doi.org/10.1016/j.apsoil.2005.01.002
- Nelson, D. W. a, & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
- Nilsson, M.-C., Wardle, D. A., & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos, 16–26. https://doi.org/10.2307/3546566
- Noguchi, K., Sakata, T., Mizoguchi, T., & Takahashi, M. (2005). Estimating the production and mortality of fine roots in a Japanese cedar (Cryptomeria japonica Don) plantation using a minirhizotron technique. Journal of Forest Research, 10, 435–441. https://doi.org/10.1007/s10310-005-0163-x
- Nsabimana, D., Klemedtson, L., Kaplin, B.A., & Wallin, G. (2008). Soil carbon and nutrient accumulation under forest plantations in southern Rwanda. African Journal of Environmental Science and Technology, 2(6), 142-149.
- Ollinger, S.V., Smith, M.L., Martin, M. E., Hallett, R.A., Goodale, C.L., & Aber, J.D. (2002). Regional variation in foliar chemistry and N cycling among forests of diverse history and composition. Ecology, 83(2), 339-355. https://doi.org/10.1890/0012-9658(2002)083[0339:RVIFCA]2.0.CO;2
- Osburn, E.D., McBride, S.G., Aylward, F.O., Badgley, B.D., Strahm, B.D., Knoepp, J.D., & Barrett, J. E. (2019). Soil bacterial and fungal communities exhibit distinct long-term responses to disturbance in temperate forests. Frontiers Microbiology, 10(12), 2872.
- Osman, K.T. (2013). Physical properties of forest soils. In Forest Soils, 19-44. Springer, Cham. https://doi.org/10.1007/978-3-319-02541-4_2
- Page, A.L., Miller, R.H., & Jeeney, D.R. (1750). Methods of soil analysis, Part 1. Physical properties. SSSA Publication, Madison.
- Parsapour, M.K., Kooch, Y., Hosseini, S.M., & Alavi, S.J. (2018). Litter and topsoil in Alnus subcordata plantation on former degraded natural forest land: a synthesis of age-sequence. Soil and Tillage Research, 179, 1-10. https://doi.org/10.1016/j.still.2018.01.008
- Pérez‐Corona, M.E., Hernández, M.C.P., & de Castro, F.B. (2006). Decomposition of alder, ash, and poplar litter in a Mediterranean riverine area. Communications in Soil Science and Plant Analysis, 37(7-8), 1111-1125. https://doi.org/10.1080/00103620600588496
- Pires, L.F., Brinatti, A.M., Saab, S.C., & Cássaro, F.A.M. (2014). Porosity distribution by computed tomography and its importance to characterize soil clod samples. Applied Radiation and Isotopes, 92, 37–45. https://doi.org/10.1016/ j.apradiso.2014.06.010
- Prescott, C.E. (2010). Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry, 101(1-3), 133-149. https://doi.org/10.1007/s10533-010-9439-0
- Qi, G., Wang, Q., Zhou, W., Ding, H., Wang, X., Qi, L., & Dai, L. (2011). Moisture effect on carbon and nitrogen mineralization in topsoil of Shanghai Mountain, Northeast China. Journal of Forest Science, 57(8), 340-348.
- Qiu, Q., Li, J.Y., Wang, J.H., He, Q., Su, Y., & Ma, J.W. (2015). Interactions between soil water and fertilizer application on fine root biomass yield and morphology of Catalpa bungei Applied Mechanics and Materials, 700, 323–333. https://doi.org/10.4028/www.scientific.net/AMM.700.323
- Ribeiro, C., Madeira, M., & Araújo, M.C. (2002). Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes. Forest Ecology and Management, 171(1-2), 31-41. https://doi.org/10.1016/S0378-1127(02)00459-0
- Robertson, G.P., Coleman, D.C., Sollins, P., & Bledsoe, C.S. (1999). Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand.
- Rodríguez-Loinaz, G., Onaindia, M., Amezaga, I., Mijangos, I., & Garbisu, C. (2008). Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology and Biochemistry, 40(1), 49-60. https://doi.org/10.1016/j.soilbio.2007.04.015
- Rothe, A., Cromack, K., Resh, S.C., Makineci, E., & Son, Y. (2002). Soil carbon and nitrogen changes under Douglas-fir with and without red alder. Soil Science Society of America Journal, 66(6), 1988-1995. https://doi.org/ 10.2136/sssaj2002.1988
- Rqnn, R.M., Griffiths, B.S., & Young, I.M. (2001). Protozoa, nematodes and N-mineralization across a prescribed soil textural gradient. Pedobiologia, 45(6), 481-495. https://doi.org/10.1078/0031-4056-00101
- Sabais, A.C.W., Scheu, S., & Eisenhauer, N. (2011). Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecologica, 37(3), 195-202. https://doi.org/10.1016/j.actao.2011.02.002
- Sabrina, T., Hanafi, M.M., Nor Azwady, A.A., & Mahmud, T.M.M. (2009). Earthworm populations and cast properties in the soils of oil Palm plantations. Journal of Soil Sciences, 13, 29-42.
- Sarlo, M. (2006). Individual tree species effect on earthworm biomass in a tropical plantation panama. Caribbean Journal of Science, 42(3), 419-427
- Saviozzi, A., Levi-Minzi, R., Cardelli, R., & Riffaldi, R. (2001). A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant and Soil, 233(2), 251-259. https://doi.org/10.1023/A:1010526209076
- Sayer, E.J., Tanner, E.V.J., & Cheesman, A.W. (2006). Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil, 281, 5–13. https://doi.org/10.1007/s11104-005-6334-x
- Schelfhout, S., Mertens, J., Verheyen, K., Vesterdal, L., Baeten, L., Muys, B., & De Schrijver, A. (2017). Tree species identity shapes earthworm communities. Forests, 8(3), 85. https://doi.org/10.3390/f8030085
- Schellenberg, J., & Bergmeier, E. (2020). Heathland plant species composition and vegetation structures reflect soil-related paths of development and site history. Applied Vegetation Sciences, 23(3), 386-405. https://doi.org/10.3390/ f8030085
- Schulp, C.J., Nabuurs, G.J., Verburg, P.H., & de Waal, R.W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3), 482-490. https://doi.org/10.1016/j.foreco.2008.05.007
- Sharrow, S.H., & Ismail, S. (2004). Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 60, 123–130.
- Silver, W.L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., & Cosme, R. (2000). Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3(2), 193-209. https://doi.org/10.1007/s100210000019
- Singh, J.S., Singh, D.P., & Kashyap, A.K. (2009). A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India. Plant Soil Environ, 55(6), 223-230.
- Singha, D., Brearley, F.Q., & Tripathi, S.K. (2020). Fine root and soil nitrogen dynamics during stand development following shifting agriculture in Northeast India. Forests, 11(12), 1236. https://doi.org/10.3390/f11121236
- Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S.J., Gregorich, E.G., Paul, E.A., & Paustian, K. (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66(6), 1981-1987. https://doi.org/10.2136/sssaj2002.1981
- Sofo, A., Mininni, A.N., & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4), 456. https://doi.org/10.3390/ agronomy10040456
- Sohrabi, H., Jourgholami, M., Lo Monaco, A., & Picchio, R. (2022). Effects of forest harvesting operations on the recovery of earthworms and nematodes in the Hyrcanain old-growth forest: assessment, mitigation, and best management practice. Land, 11(5), 746. https://doi.org/10.3390/land11050746
- Song, M., Li, X., Jing, S., Lei, L., Wang, J., & Wan, S. (2016). Responses of soil nematodes to water and nitrogen additions in old-field grassland. Applied Soil Ecology, 102(3), 53-60. https://doi.org/10.1016/j.apsoil.2016.02.011
- Soto, L., Galleguillos, M., Seguel, O., Sotomayor, B., & Lara, A. (2019). Assessment of soil physical properties’ statuses under different land covers within a landscape dominated by exotic industrial tree plantations in south-central Chile. Journal of Soil and Water Conservation, 74(1), 12–23. https://doi.org/10.2489/jswc.74.1.12
- Suthar, S. (2012). Seasonal dynamics in earthworm density, casting activity and soil nutrient cycling under Bermuda grass (Cynodon dactylon) in semiarid tropics, India. The Environmentalist, 32(4), 503-511. https://doi.org/10.1007 /s10669-012-9419-0
- Tang, T., Sun, X., Luo, Z., He, N., & Sun, O.J. (2018). Effects of temperature, soil substrate, and microbial community on carbon mineralization across three climatically contrasting forest sites. Ecology and Evolution, 8(2), 879-891. https://doi.org/10.1002/ece3.3708
- Tavakoli, M., Kooch, Y., & Akbarinia, M. (2018a). Frequency and diversity of worms in topsoil of degraded and reclaimed forest habitats of the Caspian region. Iranian Journal of Forest, 10(3), 293–306.
- Tengberg, A., Fredhoima, S., Ellisona, I., Knez, I., Saltzmana, K., & Wetterberg, O. (2012). Cultural ecosystem services provided by landscapes: assessment of Heritage values and identity. Ecosystem Services, 2, 14-26. https:// doi.org/10.1016/j.ecoser.2012.07.006
- Uvarov, A.V. (2009). Inter- and intraspecific interactions in lumbricid earthworms: their role for earthworm performance and ecosystem functioning. Pedobiologia, 53(1), 1-27. https://doi.org/10.1016/j.pedobi.2009.05.001
- Vogel, J.G., & Gower, S.T. (1998). Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems, 1(4), 386-400.
- Vohland, K., & Schroth, G. (1999). Distribution patterns of the litter macro fauna in agroforestry and monoculture plantations in central Amazonia as affected by plant species and management. Applied Soil Ecology, 13(1), 57-68. https://doi.org/10.1016/S0929-1393(99)00021-9
- Vořiškova, J., Brabcova, V., Cajthaml, T., & Baldrian, P. (2014). Seasonal dynamics of fungal communities in a temperate oak forest soil. New Physiologist, 201(1), 269-278. https://doi.org/10.1111/nph.12481
- Wadud Khan, M.A., Bohannan, B.J.M., Nusslein, K., Tiedje, J.M., Tringe, S.G., Parlade, E., Barberan, A., & Rodrigues, J.L.M. (2019). Deforestation impacts network co-occurrence patterns of microbial communities in Amazon soils. Microbiology Ecology, 95(2), 1-12. https://doi.org/10.1093/femsec/fiy230
- Wang, B., Xue, S., Liu, G., Bin, Zhang, G.H., Li, G., & Ren, Z.P. (2012). Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China. Catena, 92, 186–195. https:// doi.org/10.1016/j.catena.2011.12.004
- Wang, Q., & Dalal, S. (2006). Microbial biomass in subtropical forest soils: effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata Journal of Forestry Research, 17(3), 197–200.
- Wang, Q., Xiao, F., He, T., & Wang, S. (2010). Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Annals of Forest Science, 70, 579–587. https://doi.org/10.1007/s13595-013-0294-8
- Wen‐Jie, W.A.N.G., Ling, Q., Yuan‐Gang, Z.U., Dong‐Xue, S.U., Jing, A., Hong‐Yan, W.A.N.G., Guan‐Yu, Z.H.E.N.G., Wei, S., & Xi‐Quan, C.H.E.N. (2011). Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Global Change Biology, 17(8), 2657-2676. https://doi.org/10.1111/j.1365-2486.2011.02447.x
- Wenxiang, H., Xin, J., & Yongrong, B. (2002). Study on soil enzyme activity effected by dimehypo. Xibei Nonglin Keji Daxue Xuebao (China).
- Wollum, A.G. (1982). Cultural methods for soil microorganisms. Methods of soil analysis: part 2 chemical and microbiological properties, 9:781-802. https://doi.org/10.2134/agronmonogr9.2.2ed.c37
- Xiao, L., Bi, Y., Du, S., Wang, Y., Guo, C., & Christie, P. (2021). Response of ecological stoichiometry and stoichiometric homeostasis in the plant-litter-soil system to re-vegetation type in arid mining subsidence areas. Journal of Arid Environments, 184(7), 1-9. https://doi.org/10.1016/j.jaridenv.2020.104298
- Yuan, Z.Y., & Chen, H.Y. (2010). Fine root biomass, production, Turnover rates, and nutrient contents in Boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature Review and Meta-Analyses. Critical Reviews in Plant Sciences, 29(4), 204-221. https://doi.org/10.1080/07352689.2010.483579
- Yue, B.B., Li, X., Zhang, H.H., Jin, W.W., Xu, N., Zhu, W.X., & Sun, G.Y. (2013). Soil microbial diversity and community structure under continuous Tobacco cropping. Soils, 45(1), 116-119.
- Zancan, S., Trevisan, R., & Paoletti, M.G. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture Ecosystem Environment, 112(1), 1–12. https://doi.org/10.1016/j.agee.2005.06.018
- Zeraatpisheh, M., Bakhshandeh, E., Hosseini, M., & Alavi, S.M. (2020). Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma, 363, 114139. https://doi.org/ 10.1016/j.geoderma.2019.114139
- Zhang, L., Jing, Y., Chen, C., Xiang, Y., Rezaei Rashti, M., Li, Y., Deng, Q., & Zhang, R. (2021). Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta‐analysis of field studies. GCB Bioenergy, 13(12), 1859–1873. https://doi.org/10.1111/gcbb.12898
- Zhao, C., Li, Y., Zhang, C., Miao, Y., Liu, M., Zhuang, W., Shao, Y., Zhang, W., & Fu, S. (2021). Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa Soil Ecology Letters, 3, 145–155. https://doi.org/10.1007/s42832-021-0085-3
Zhou, W.J., Sha, L.Q., Schaefer, D.A., Zhang, Y.P., Song, Q.H., Tan, Z.H., & Guan, H.L. (2015). Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biology and Biochemistry, 81(2), 255-258. https://doi.org/10.1016/j.soilbio.2014.11.019
|