- Aserin, A. (Ed.). (2007). Multiple emulsion: technology and applications. John Wiley & Sons.
- Alhasan, F.H., Tehrani, M.M., & Varidi, M. (2023). Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics. Food Chemistry, X, 101033. https://doi.org/10.1016/j.fochx.2023.101033
- Binks, B.P., & Marinopoulos, I. (2017). Ultra-stable self-foaming oils. Food Research International, 95, 28-37. https://doi.org/10.1016/j.foodres.2017.02.020
- Binks, B.P., & Vishal, B. (2021). Particle-stabilized oil foams. Advances in Colloid and Interface Science, 291, 102404. https://doi.org/10.1016/j.cis.2021.102404
- Brun, M., Delample, M., Harte, E., Lecomte, S., & Leal-Calderon, F. (2015). Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions. Food Research International, 67, 366-375. https://doi.org/10.1016/j.foodres.2014.11.044
- Callau, M., Sow-Kébé, K., Jenkins, N., & Fameau, A.L. (2020). Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chemistry, 333, 127403. https://doi.org/10.1016/j.foodchem.2020.127403
- Fameau, A.L., & Binks, B.P. (2021). Aqueous and oil foams stabilized by surfactant crystals: New concepts and perspectives. Langmuir, 37(15), 4411-4418. https://doi.org/10.1021/acs.langmuir.1c00410
- Fameau, A.L., Carl, A., Saint‐Jalmes, A., & Von Klitzing, R. (2015). Responsive aqueous foams. ChemPhysChem, 16(1), 66-75. https://doi.org/10.1002/cphc.201402580
- Goibier, L., Pillement, C., Monteil, J., Faure, C., & Leal-Calderon, F. (2019). Emulsification of nonaqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids. Food Chemistry, 293, 49-56. https://doi.org/10.1016/j.foodchem.2019.04.080
- Lei, M., Zhang, N., Lee, W.J., Tan, C.P., Lai, O.M., Wang, Y., & Qiu, C. (2020). Nonaqueous foams formed by whipping diacylglycerol stabilized oleogel. Food Chemistry, 312, 126047. https://doi.org/10.1016/j.foodchem.2019.126047
- Li, J., Zhu, Y., & Teng, C. (2017). The effects of biomacromolecules on the physical stability of W/O/W emulsions. Journal Food Science Technology, 54, 469–480. https://doi.org/10.1007/s13197-017-2488-9
- Lin, C., Kebebew Debeli, D., Gan, L., Deng, J., Hu, L., Shan, G. (2020). Polyether-modified siloxane stabilized dispersion system on the physical stability and control release of double (W/O/W) emulsions. Food Chemistry. https://doi.org/10.1016/j.foodchem.2020.127381
- Liu, Y., & Binks, B.P. (2021). A novel strategy to fabricate stable oil foams with sucrose ester surfactant. Journal of Colloid and Interface Science, 594, 204-216. https://doi.org/10.1016/j.jcis.2021.03.021
- Liu, Y., & Binks, B.P. (2022). Fabrication of stable oleofoams with sorbitan ester surfactants. Langmuir, 38(48), 14779-14788. https://doi.org/10.1021/acs.langmuir.2c02413
- Lu, Y., Zhang, B., Shen, H., Ge, X., Sun, X., Zhang, Q., & Li, W. (2021). Sodium caseinate and acetylated mung bean starch for the encapsulation of lutein: Enhanced solubility and stability of lutein. Foods, 11(1), 65. https://doi.org/10.3390/foods11010065
- Mishra, K., Bergfreund, J., Bertsch, P., Fischer, P., & Windhab, E.J. (2020). Crystallization-induced network formation of tri-and monopalmitin at the middle-chain triglyceride oil/air interface. Langmuir, 36(26), 7566-7572. https://doi.org/10.1021/acs.langmuir.0c01195
- Mollakhalili Meybodi, N., Mohammadifar, M.A., & Abdolmaleki, K.H. (2014). Effect of dispersed phase volume fraction on physical stability of oil-in-water emulsion in the presence of gum tragacanth. Journal of Food Quality and Hazards Control, 1(4), 102-107.
- Murray, B.S. (2020). Recent developments in food foams. Current Opinion in Colloid & Interface Science, 50, 101394. https://doi.org/10.1016/j.cocis.2020.101394
- O’Regan, J., & Mulvihill, D.M. (2010). Sodium caseinate–maltodextrin conjugate stabilized double emulsions: Encapsulation and stability. Food Research International, 43(1), 224-231. https://doi.org/10.1016/j.foodres.2009.09.031
- Paraskevopoulou, A., Boskou, D., & Kiosseoglou, V. (2005). Stabilization of olive oil–lemon juice emulsion with polysaccharides. Food Chemistry, 90(4), 627-634. https://doi.org/10.1016/j.foodchem.2004.04.023
- Perrechil, F.A., & Cunha, R.L. (2010). Oil-in-water emulsions stabilized by sodium caseinate: Influence of pH, high-pressure homogenization and locust bean gum addition. Journal of Food Engineering, 97(4), 441-448. https://doi.org/10.1016/j.jfoodeng.2009.10.041
- Perrechil, F.A., Maximo, G.J., Sato, A.C.K., & Cunha, R.L. (2020). Microbeads of sodium caseinate and κ-carrageenan as a β-carotene carrier in aqueous systems. Food Bioprocess Technology, 13, 661–669. https://doi.org/10.1007/s11947-020-02426-9
- Perrechil, F.A., Maximo, G.J., & Sato, A.C.K. (2020).Microbeads of sodium caseinate and κ-Carrageenan as a β-carotene carrier in aqueous systems. Food Bioprocess Technology, 13, 661–669. https://doi.org/10.1007/s11947-020-02426-9.
- Qiu, C., Wang, S., Wang, Y., Lee, W.J., Fu, J., Binks, B.P., & Wang, Y. (2022). Stabilization of oleofoams by lauric acid and its glycerol esters. Food Chemistry, 386, 132776. https://doi.org/10.1016/j.foodchem.2022.132776
- Salonen, A. (2020). Mixing bubbles and drops to make foamed emulsions. Current Opinion in Colloid & Interface Science, 50, 101381. https://doi.org/10.1016/j.cocis.2020.08.006
- Saremnejad, F., Mohebbi, M., & Koocheki, A. (2020). Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce. Food and Bioproducts Processing, 119, 216-225. https://doi.org/10.1016/j.fbp.2019.11.004
- Seddari, S., & Moulai-Mostefa, N. (2015). Formulation and characterization of double emulsions stabilized by sodium caseinate–xanthan mixtures effect of pH and biopolymer concentration. Journal of Dispersion Science and Technology, 36(1), 51-60. https://doi.org/10.1080/01932691.2013.873867
- Sharma, M., Mann, B., Sharma, R., Bajaj, R., Athira, S., Sarkar, P., & Pothuraju, R. (2017). Sodium caseinate stabilized clove oil nanoemulsion: physicochemical properties. Journal of Food Engineering, 212, 38-46. https://doi.org/10.1016/j.jfoodeng.2017.05.006
- Tang, M.X., Zhu, Y.D., Li, D., Adhikari, B., & Wang, L.J. (2019). Rheological, thermal and microstructural properties of casein/κ-carrageenan mixed systems. Lwt, 113, 108296. https://doi.org/10.1016/j.lwt.2019.108296
- Thanh Diep, T., Phan Dao, T., Vu, H.T., Quoc Phan, B., Ngoc Dao, D., Huu Bui, T., ... & Nguyen, V. (2018). Double emulsion oil-in water-in-oil (O/W/O) stabilized by sodium caseinate and k-carrageenan. Journal of Dispersion Science and Technology, 39(12), 1752-1757. https://doi.org/10.1080/01932691.2018.1462198
- Wei, P., Tan, Q., Uijttewaal, W., van Lier, J.B., & de Kreuk, M. (2018). Experimental and mathematical characterization of the rheological instability of concentrated waste-activated sludge subject to anaerobic digestion. Chemical Engineering Journal, 349, 318-326. https://doi.org/10.1016/j.cej.2018.04.108
- Wildmoser, H., Scheiwiller, J., & Windhab, E.J. (2004). Impact of disperse microstructure on rheology and quality aspects of ice cream. LWT-Food Science and Technology, 37(8), 881-891. https://doi.org/10.1016/j.lwt.2004.04.006
- Zhao, H., Zhou, F., Peng, W., Zheng, J., Dziugan, P., Zhang, B. (2015). The effects of κ-CG on the stability of reaching and the interactions between them. Food Hydrocolloids, 43, 763–8. httpa://doi.org/10.1016/j.foodhyd.2014.08.006
|