- Ahmadi, F., & Jafarpour, M. (2015). The functional effect of different organic matter on spinach (Spinacia oleracea) . Journal of Earth, Environment and Health Sciences, 1(1), 1. https://doi.org/10.4103/2423-7752.159915
- Alessa, O., Najla, S., & Murshed, R. (2017). Improvement of yield and quality of two Spinacia oleracea varieties by using different fertilizing approaches. Physiology and Molecular Biology of Plants, 23(3), 693–702. https://doi.org/10.1007/s12298-017-0453-8
- Ali, Z.I., Malik, E.M.A., Babiker, H.M., Ramraj, V.M., Sultana, A., & Johansen, C. (1998). Iron and nitrogen interactions in groundnut nutrition. Communications in Soil Science and Plant Analysis, 29(17–18), 2619–2630. https://doi.org/10.1080/00103629809370138
- Anwar, Z., Irshad, M., Bilal, M., Irshad, U., Hafeez, F., & Owens, G. (2017). Changes in availability of plant nutrients during composting of cow manure with poplar leaf litter. Compost Science and Utilization, 25(4), 242–250. https://doi.org/10.1080/1065657X.2017.1300547
- Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
- Ayed, I.A. (1970). A study of the mobilization of iron in tomato roots by chelate treatments. Plant and Soil, 32(1), 18–26. https://doi.org/10.1007/BF01372842
- Bayili, R.G., Abdoul-Latif, F., Kone, O.H., Diao, M., Imael, H., Bassole, N., & Dicko, M.H. (2011). Phenolic compounds and antioxidant activities in some fruits and vegetables from Burkina Faso. African Journal of Biotechnology, 10(62), 13543–13547. https://doi.org/10.5897/ajb10.2010
- Bergman, M., Varshavsky, L., Gottlieb, H.E., & Grossman, S. (2001). The antioxidant activity of aqueous spinach extract: Chemical identification of active fractions. Phytochemistry, 58(1), 143–152. https://doi.org/10.1016/S0031-9422(01)00137-6
- Boldrin, A., Andersen, J.K., Møller, J., Christensen, T.H., & Favoino, E. (2009). Composting and compost utilization: Accounting of greenhouse gases and global warming contributions. Waste Management and Research, 27(8), 800–812. https://doi.org/10.1177/0734242X09345275
- Cataldo, D.A., Haroon, M. H., Schrader, L.E., & Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71–80. https://doi.org/10.1080/00103627509366547
- Cheng, K.L., & Bray, R.H. (1951). Determination of calcium and magnesium in soil and plant material. Soil Science, 72(6), 449–458. https://doi.org/10.1097/00010694-195112000-00005
- Citak, S., & Sonmez, S. (2010). Effects of conventional and organic fertilization on spinach (Spinacea oleracea) growth, yield, vitamin C and nitrate concentration during two successive seasons. Scientia Horticulturae, 126(4), 415–420. https://doi.org/10.1016/j.scienta.2010.08.010
- Deveci, M., & Uzun, E. (2011). Determination of phenolic compounds and chlorophyll content of Spinach (Spinacia oleracea) at different growth stages. Asian Journal of Chemistry, 23(8), 3739–3743.
- Elia, A., Santamaria, P., & Serio, F. (1998). Nitrogen nutrition, yield and quality of spinach. Journal of the Science of Food and Agriculture, 76(3), 341–346. https://doi.org/10.1002/(SICI)1097-0010(199803)76:3<341::AID-JSFA938>3.0.CO;2-4
- Erfani, F., Hassandokht, M.R., Barzegar, M., & Jabbari, A. (2006). Determination and comparison of chemical properties of seven Iranian spinach cultivars. Journal of Food Science and Technology(Iran), 3(2), 27–33.
- Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of Soil, Plant , and Water Analysis : A manual for the West Asia and North (Third Edit). International Center for Agricultural Research in the Dry Sreas.
- Fageria, N.K., & Baligar, V.C. (1999). Growth and nutrient concentrations of common bean, lowland rice, corn, soybean, and wheat at different soil pH on an inceptisol. Journal of Plant Nutrition, 22(9), 1495–1507. https://doi.org/10.1080/01904169909365730
- Fageria, N Kumar. (1983). Ionic interactions in rice plants from dilute solutions. Plant and Soil, 70(3), 309–316. https://doi.org/10.1007/BF02374887
- Fageria, V.D. (2001). Nutrient interactions in crop plants. Journal of Plant Nutrition, 24(8), 1269–1290. https://doi.org/10.1081/PLN-100106981
- Ferreira, J.F., Sandhu, D., Liu, X., & Halvorson, J.J. (2018). Spinach (Spinacia oleracea) response to salinity: nutritional value, physiological parameters, antioxidant capacity, and gene expression. Agriculture, 8, 163.
- Ghaly, F., Baddour, G., & El-Azazy, H. (2017). Nitrate accumulation and oxalate formation in spinach plants (Spinacia oleracea) as affected by nitrogen fertilization levels and iron foliar application. Journal of Soil Sciences and Agricultural Engineering, 8(11), 571–576. https://doi.org/10.21608/jssae.2017.38092
- Graham, R.F., Wortman, S.E., & Pittelkow, C.M. (2017). Comparison of organic and integrated nutrient management strategies for reducing soil N2O emissions. Sustainability (Switzerland), 9(4). https://doi.org/10.3390/ su9040510
- Gupta, K., & Wagle, D.S. (1988). Nutritional and antinutritional factors of green leafy vegetables. Journal of Agricultural and Food Chemistry, 36(3), 472–474. https://doi.org/10.1021/jf00081a016
- Hargreaves, J.C., Adl, M.S., & Warman, P.R. (2008). A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems and Environment, 123(1–3), 1–14. https://doi.org/10.1016/j.agee.2007.07.004
- Hodges, D.M., & Forney, C.F. (2003). Postharvest ascorbate metabolism in two cultivars of spinach differing in their senescence rates. Journal of the American Society for Horticultural Science, 128(6), 930–935. https://doi.org/ 10.21273/jashs.128.6.0930
- Huang, C.Y.L., & Schulte, E.E. (1985). Digestion of plant tissue for analysis by ICP emission spectroscopy. Communications in Soil Science and Plant Analysis, 16(9), 943–958. https://doi.org/10.1080/00103628509367657
- Kemp, A. (1983). The Effect of fertilizer treatment of grassland on the biological availability of magnesium. In role of magnesium in animal nutrtition (pp. 143–157).
- Khan, M.A.I., Ueno, K., Horimoto, S., Komai, F., Tanaka, K., & Ono, Y. (2007). Evaluation of the physio-chemical and microbial properties of green tea waste-rice bran compost and the effect of the compost on spinach production. Plant Production Science, 10(4), 391–399. https://doi.org/10.1626/pps.10.391
- Kunicki, E., Grabowska, A., Sękara, A., & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea) . Folia Horticulturae, 22(2), 9–13. https://doi.org/10.2478/fhort-2013-0153
- Li, W., Pickard, M.D., & Beta, T. (2007). Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chemistry, 104(3), 1080–1086. https://doi.org/10.1016/j.foodchem.2007.01.024
- Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
- Lomnitski, L., Bergman, M., Nyska, A., Ben-Shaul, V., & Grossman, S. (2003). Composition, efficacy, and safety of spinach extracts. Nutrition and Cancer, 46(2), 222–231. https://doi.org/10.1207/S15327914NC4602_16
- Loneragan, J.F., Grunes, D.L., Welch, R.M., Aduayi, E.A., Tengah, A., Lazar, V.A., & Cary, E.E. (1982). Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Science Society of America Journal, 46(2), 345–352. https://doi.org/10.2136/sssaj1982.03615995004600020027x
- Machado, R.M.A., Alves-Pereira, I., Lourenço, D., & Ferreira, R.M.A. (2020). Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e05085
- Machado, Rui M.A., Alves-Pereira, I., Robalo, M., & Ferreira, R. (2021). Effects of municipal solid waste compost supplemented with inorganic nitrogen on physicochemical soil characteristics, plant growth, nitrate content, and antioxidant activity in Spinach. Horticulturae, 7(3), 53. https://doi.org/10.3390/horticulturae7030053
- Maynard, D.N., Barker, A.V., Minotti, P.L., & Peck, N.H. (1976). Nitrate accumulation in vegetables. Advances in Agronomy, 28(C), 71–118. https://doi.org/10.1016/S0065-2113(08)60553-2
- Mengel, K., & Kirkby, E. (2001). Principles of plant nutrition. In International Potash Institute, Bern, Switzerland (5th Ed, Vol. 129, Issue 1). https://doi.org/10.1097/00010694-198001000-00011
- Minitab Inc. (2013). MINITAB statistical software. In Version: Release 16 (No. 18; Vol. 14, Issue c, p. 10). Pennsylvania State University.
- Moraghan, J.T., & Mascagni, H.J. (2018). Environmental and soil factors affecting micronutrient deficiencies and toxicities. In Micronutrients in Agriculture (pp. 371–425). https://doi.org/10.2136/sssabookser4.2ed.c11
- Murphy, L.S., Ellis, R., & Adriano, D.C. (1981). Phosphorus-micronutrient interaction effects on crop production. Journal of Plant Nutrition, 3(1–4), 593–613. https://doi.org/10.1080/01904168109362863
- Naik, V.V, Mahavidyalaya, S.P.K., & Sindhudurg, D. (2014). Methodology in determination of oxalic acid in plant tissue: a comparative approach. Journal of Global Trends in Pharmaceutical Sciences, 5(2), 1662–1672.
- Nakata, P.A. (2003). Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science, 164(6), 901–909. https://doi.org/10.1016/S0168-9452(03)00120-1
- Rasband, W. (2018). ImageJ (2.0.0-rc-69/1.52p; java 1.8.0_172 [64-bit]). Bethesda, Maryland: U. S. National Institutes of Health.
- Rashid, M., Yousaf, Z., Din, A., Munawar, M., Aftab, A., Riaz, N., Younas, A., Alaraidh, I.A., Okla, M.K., & AbdElgawad, H. (2022). Assessment of mineral nutrient efficiency in genetically diverse spinach accessions by biochemical and functional marker strategies. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.889604
- Sadasivam, S., & Balasubramanian, T. (1987). Practical Manual in Biochemistry.
- Salarinik, Kh., & Nael, M. (2024). The effect of agricultural waste and residue composts in two consecutive spinach cultivations: 1- response of soil fertility indicators, plant nutrient uptake, and yield. Journal of Water and Soil, 37(6), 871-890. (In Persian with English abstract). https://doi.org/10.22067/jsw.2023.83762.1318
- SAS Institute Inc. (2013). SAS/ACCESS® 9.4 Interface to ADABAS: Reference. (9.4). Cary, NC: SAS Institute Inc.
- Shukla, U.C., & Mukhi, A.K. (1980). Ameliorative role of Zn, K, and gypsum on maize growth under alkali soil conditions. Agronomy Journal, 72(1), 85–88. https://doi.org/10.2134/agronj1980.00021962007200010017x
- Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
- Stagnari, F., Di Bitetto, V., & Pisante, M. (2007). Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Scientia Horticulturae, 114(4), 225–233. https://doi.org/10.1016/j.scienta.2007. 06.016
- Tanaka, F., Kim, T.H., & Yoneyama, T. (2001). Relationship between oxalate synthesis and nitrate reduction in spinach (Spinacia oleracea) plants tracing by 13C and 15N. Plant Nutrition, 302–303. https://doi.org/10.1007/0-306-47624-x_145
- Wang, F., Wang, G., Li, X., Huang, J., & Zheng, J. (2008). Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa). Journal of Plant Physiology, 165(3), 324–330. https://doi.org/10.1016/j.jplph.2006.11.006
- Wang, N., Fu, F., Wang, H., Wang, P., He, S., Shao, H., Ni, Z., & Zhang, X. (2021). Effects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris). Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-95792-z
- Xu, C., & Mou, B. (2016). Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. Journal of the American Society for Horticultural Science, 141(1), 12–21. https://doi.org/10.21273/jashs.141.1.12
- Yang, S., Zhang, Z., Cong, L., Wang, X., & Shi, S. (2013). Effect of fulvic acid on the phosphorus availability in acid soil. Journal of Soil Science and Plant Nutrition, 13(3), 526–533. https://doi.org/10.4067/S0718-95162013005000041
- Yosefi, Z., Tabaraki, R., Gharneh, H.A.A., & Mehrabi, A.A. (2010). Variation in antioxidant activity, total phenolics, and nitrate in spinach. International Journal of Vegetable Science, 16(3), 233–242. https://doi.org/ 10.1080/19315260903577278
|