خزایی، رقیه، رحمانی، علیرضا، صیدمحمدی، عبدالمطلب، فردمال، جواد، و لیلی، مصطفی. (1398). بررسی کارایی فرآیندuv/پراکسی مونوسولفات آنتیبیوتیک سفیکسیم از محلولهای آبی. مجله علمی دانشگاه علوم پزشکی کردستان، 24(4)، 22-40.
کمانی، حسین، حسین پناهی، آیت، نورآبادی ، الهام، و آبی، غلامرضا. (1398). بررسی کارآیی فرآیند تلفیقی التراسونیک-پرسولفات در کاهش مواد آلی فاضلاب سنتتیک لبنی. نشریه دانشگاه علوم پزشکی بیرجند، 26(1)، 32-43.
Almasi, A., Mohammadi, M., Shamsi, K., Mohammadi, S., & Saeidimoghadam, Z. (2017). Sonolytic and photocatalytic (sonophotocatalytic) removal of cephalexin from aqueous solution: process optimization using response surface methodology (RSM). Desalination and water treatment, 85, 256-263. DOI: 10.5004/dwt.2017.21030
Arslan-Alaton, I., & Gurses, F. (2004). Photo-Fenton-like and photo-fenton-like oxidation of Procaine Penicillin G formulation effluent. Journal of photochemistry and photobiology A: Chemistry, 165(1-3), 165-175. DOI: 10.1016/j.jphotochem.2004.03.016
Awad, Y. M., Kim, S. C., Abd El-Azeem, S. A., Kim, K. H., Kim, K. R., Kim, K., ... & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental earth sciences, 71, 1433-1440. DOI: 10.1007/s12665-013-2548-z
Badawy, M. I., Wahaab, R. A., & El-Kalliny, A. S. (2009). Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. Journal of hazardous materials, 167(1-3), 567-574. DOI: 10.1016/j.jhazmat.2009.01.023
Cha, J., Yang, S., & Carlson, K. H. (2015). Occurrence of β-lactam and polyether ionophore antibiotics in surface water, urban wastewater, and sediment. Geosystem Engineering, 18(3), 140-150. DOI: 10.1080/12269328.2015.1010658
Damiri, F., Dobaradaran, S., Hashemi, S., Foroutan, R., Vosoughi, M., Sahebi, S., ... & Boffito, D. C. (2020). Waste sludge from shipping docks as a catalyst to remove amoxicillin in water with hydrogen peroxide and ultrasound. Ultrasonics Sonochemistry, 68, 105187. DOI: 10.1016/j.ultsonch.2020.105187
Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of environmental management, 195, 93-99. DOI: 10.1016/j.jenvman.2017.04.010
Dirany, A., Sirés, I., Oturan, N., & Oturan, M. A. (2010). Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81(5), 594-602. DOI: 10.1016/j.chemosphere.2010.08.032
Garoma, T., Umamaheshwar, S. K., & Mumper, A. (2010). Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere, 79(8), 814-820. DOI: 10.1016/j.chemosphere.2010.02.060
Gashtasbi, F., Yengejeh, R. J., & Babaei, A. A. (2017). Adsorption of vancomycin antibiotic from aqueous solution using an activated carbon impregnated magnetite composite. Desalination and water treatment, 88, 286-297. DOI: 10.5004/dwt.2017.21455
Githinji, L.J., Musey, M. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, & Soil Pollution, 219, 191-201. DOI: 10.1007/s11270-010-0697-1
Ji, Y., Ferronato, C., Salvador, A., Yang, X., & Chovelon, J. M. (2014). Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Science of the total environment, 472, 800-808. DOI: 10.1016/j.scitotenv.2013.11.008
Jendrzejewska, N., & Karwowska, E. (2018). The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water science and technology, 77(9), 2320-2326. DOI: 10.2166/wst.2018.153
Körbahti, B. K., & Taşyürek, S. (2015). Electrochemical oxidation of ampicillin antibiotic at boron-doped diamond electrodes and process optimization using response surface methodology. Environmental Science and Pollution Research, 22, 3265-3278. DOI: 10.1007/s11356-014-3101-7
Khamoushi, H. Dehrazma, B. (2017). Removal of vancomycin antibiotic from aqueous solution using nanobentonite natural adsorbent, Fifth National Conference on Applied Research in Civil Engineering, Architecture and Urban Management., Tehran, IRAN.
Ouyang, W. Y., Huang, F. Y., Zhao, Y., Li, H., & Su, J. Q. (2015). Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Applied microbiology and biotechnology, 99, 5697-5707. DOI: 10.1007/s00253-015-6416-5
Sharma, S., Ruparelia, J. P., & Patel, M. L. (2011). A general review on advanced oxidation processes for waste water treatment. In Nirma University International Conference, Ahmedabad, Gujarat, 382-481.
Shokri, R., Yengejeh, R. J., Babaei, A. A., Derikvand, E., & Almasi, A. (2019). UV activation of hydrogen peroxide for removal of azithromycin antibiotic from aqueous solution: determination of optimum conditions by response surface methodology. Toxin Reviews. DOI: 10.1080/15569543.2018.1517803
Shaykhi Mehrabadi, Z. (2016). Performance of advanced oxidation process (UV/O3/H2O2) degrading amoxicillin wastewater: A comparative study. Journal of applied research in water and wastewater, 3(1), 222-231.
Yuan, F., Hu, C., Hu, X., Qu, J., & Yang, M. (2009). Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water research, 43(6), 1766-1774. DOI: 10.1016/j.watres.2009.01.008
Yao, H., Sun, P., Minakata, D., Crittenden, J. C., & Huang, C. H. (2013). Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H2O2. Environmental science & technology, 47(9), 4581-4589. DOI: 10.1021/es3052685