- Achat, D.L., Daumer, M.L., Sperandio, M., Santellani, A.C., & Morel, C. (2014a). Solubility and mobility of phosphorus recycled from dairy effluents and pig manures in incubated soils with different characteristics. Nutrient cycling in agroecosystems, 99, 1-15. https://doi.org/10.1007/s10705-014-9614-0
- Achat, D.L., Sperandio, M., Daumer, M.L., Santellani, A.C., Prud'Homme, L., Akhtar, M., & Morel, C. (2014b). Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques. Geoderma, 232, 24-33. https://doi.org/10.1016/j.geoderma.2014.04.028
- Ackerman, J.N., Zvomuya, F., Cicek, N., & Flaten, D. (2013). Evaluation of manure-derived struvite as a phosphorus source for canola. Canadian Journal of Plant Science, 93(3), 419-424.
- Arzani, A., & Ashraf, M. (2017). Cultivated ancient wheats (Triticum spp.): A potential source of health‐beneficial food products. Comprehensive Reviews in Food Science and Food Safety, 16(3), 477-488. https://doi.org/10.1111/ 1541-4337.12262
- Barbosa, S.G., Peixoto, L., Meulman, B., Alves, M.M., & Pereira, M.A. (2016). A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical Engineering Journal, 298, 146-153. https://doi.org/10.1016/j.cej.2016.03.148
- Bastida, F., Jehmlich, N., Martínez-Navarro, J., Bayona, V., García, C., & Moreno, J.L. (2019). The effects of struvite and sewage sludge on plant yield and the microbial community of a semiarid Mediterranean soil. Geoderma, 337, 1051-1057. https://doi.org/10.1016/j.geoderma.2018.10.046
- Bonvin, C., Etter, B., Udert, K.M., Frossard, E., Nanzer, S., Tamburini, F., & Oberson, A. (2015). Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio, 44, 217-227. https://doi.org/ 10.1007/s13280-014-0616-6
- Day, P.R. (1965). Particle fractionation and particle size analysis. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9, 545-567.
- Degryse, F., Baird, R., Da Silva, R.C., & McLaughlin, M.J. (2017). Dissolution rate and agronomic effectiveness of struvite fertilizers–effect of soil pH, granulation and base excess. Plant and Soil, 410, 139-152.
- Ehmann, A., Bach, I.M., Laopeamthong, S., Bilbao, J., & Lewandowski, I. (2017). Can phosphate salts recovered from manure replace conventional phosphate fertilizer? Agriculture, 7(1), 1. https://doi.org/10.3390/agriculture 7010001
- Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M.P., & Mommer, L. (2017). Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7(1), 44641. https://doi.org/10.1038/srep44641
- El-Rafie, S., Hawash, S., & Shalaby, M.S. (2013). Evaluation of struvite precipitated from chemical fertilizer industrial effluents. Advances in Applied Science Research, 4(1), 113-123.
- Erdal, İ., Mejri, R., Yaylaci, C., & Turkan, Ş.A. (2023). Comparison of the effectiveness of struvite and some commercial fertilizers on the growth of lettuce. Bahçe, 52(2), 95-102. https://doi.org/10.53471/bahce.1316809
- Fageria, N.K. (2014). Nitrogen management in crop production. New York: CRC Press. ISBN:978-1-4822-2283-8.
- Franz, M. (2008). Phosphate fertilizer from sewage sludge ash (SSA). Waste Management, 28(10), 1809–1818.
- Gell, K., De Ruijter, F.J., Kuntke, P., De Graaff, M., & Smit, A.L. (2011). Safety and effectiveness of struvite from black water and urine as a phosphorus fertilizer. Journal of Agricultural Science, 3(3), 67.
- González-Ponce, R., López-de-Sá, E.G., & Plaza, C. (2009). Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater. HortScience, 44(2), 426-430.
- Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4(2), 83-91.
- Guyonnet, J.P., Cantarel, A.A., Simon, L., & Haichar, F.E.Z. (2018). Root exudation rate as functional trait involved in plant nutrient‐use strategy classification. Ecology and Evolution, 8(16), 8573-8581. https://doi.org/10.1002/ ece3.4383
- Hakim, A., Jaganath, S., Honnabyraiah, M.K., Kumar, S.M., Kumar, S.A., & Dayamani, K.J. (2018). Effect of biofertilizers and Auxin on total chlorophyll content of leaf and leaf area in pomegranate (Punica granatum) cuttings. International Journal of Pure and Applied Bioscience, 6(1), 987-991.
- Hall, R.L., Staal, L.B., Macintosh, K.A., McGrath, J.W., Bailey, J., Black, L., & Williams, P.N. (2020). Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma, 362, 114096. https://doi.org/10.1016/j.geoderma.2019.114096
- Hertzberger, A.J., Cusick, R.D., & Margenot, A.J. (2020). A review and meta‐analysis of the agricultural potential of struvite as a phosphorus fertilizer. Soil Science Society of America Journal, 84(3), 653-671. https://doi.org/ 10.1016/j.geoderma.2019.114096
- Hertzberger, A.J., Cusick, R.D., & Margenot, A.J. (2021). Maize and soybean response to phosphorus fertilization with blends of struvite and monoammonium phosphate. Plant and Soil, 461, 547-563. https://doi.org/10.1007/ s11104-021-04830-2
- Hopkins, B.G., & Hansen, N.C. (2019). Phosphorus management in high‐yield systems. Journal of Environmental Quality, 48(5), 1265-1280. https://doi.org/10.2134/jeq2019.03.0130
- Hopkins, B., & Ellsworth, J. (2003, January). Phosphorus nutrition in potato production. In Idaho Potato Conference (pp. 22-23).
- Huygens, D., Saveyn, H., Tonini, D., Eder, P., & Delgado Sancho, L. (2019). Technical proposals for selected new fertilising materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009). FeHPO CaHPO, 4.
- Jama-Rodzeńska, A., Chohura, P., Gałka, B., Szuba-Trznadel, A., Falkiewicz, A., & Białkowska, M. (2022). Effect of different doses of phosgreen fertilization on chlorophyll, K, and Ca content in Butterhead lettuce (Lactuca sativa ) grown in peat substrate. Agriculture, 12(6), 788.
- Jones Jr, J.B., & Case, V.W. (1990). Sampling, handling, and analyzing plant tissue samples. Soil Testing and Plant Analysis, 3, 389-427.
- Kuo, S., Sparks, D.L., Page, A.L., Helmke, P.A., & Loeppert, R.H. (1996). Phosphorus. Methods of soil analysis. Part 3. Chemical methods. Madison. Soil Sci Soc Am. Inc Am Soc Agron Inc, 4-9.
- Li, B., Huang, H.M., Boiarkina, I., Yu, W., Huang, Y.F., Wang, G.Q., & Young, B.R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. https://doi.org/10.1016/j.jenvman.2019.07.025
- Liang, S., Chen, H., Zeng, X., Li, Z., Yu, W., Xiao, K., & Yang, J. (2019). A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash. Water Research, 159, 242-251. https://doi.org/10.1016/j.watres.2019.05.022
- Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428.
- Liu, Y., Chen, J., Mol, A.P., & Ayres, R.U. (2007). Comparative analysis of phosphorus use within national and local economies in China. Resources, Conservation and Recycling, 51(2), 454-474. https://doi.org/10.1016/ j.resconrec.2006.10.012
- Ma, J., Zhao, D., Tang, X., Yuan, M., Zhang, D., Xu, M., & Jiang, L. (2022). Genome-wide association study on root system architecture and identification of candidate genes in wheat (Triticum aestivum ). International Journal of Molecular Sciences, 23(3), 1843. https://doi.org/10.3390/ijms23031843
- Mancho, C., Diez-Pascual, S., Alonso, J., Gil-Díaz, M., & Lobo, M.C. (2023). Assessment of recovered struvite as a safe and sustainable phosphorous fertilizer. Environments, 10(2), 22. https://doi.org/10.3390/environments 10020022
- Meng, X., Liu, X., Huang, Q., Gao, H., Tay, K., & Yan, J. (2019). Recovery of phosphate as struvite from low-temperature combustion sewage sludge ash (LTCA) by cation exchange. Waste Management, 90, 84-93. https:// doi.org/10.1016/j.wasman.2019.04.045
- Militaru, B.A., Lupa, L., & Pode, R. (2019). Phosphorus recovery as struvite from sewage sludge ash. International Multidisciplinary Scientific GeoConference: SGEM, 19(4.1), 749-755. https://doi.org/10.5593/sgem2019/4.1/ S18.095
- Nongqwenga, N., Muchaonyerwa, P., Hughes, J., Odindo, A., & Bame, I. (2017). Possible use of struvite as an alternative phosphate fertilizer. Journal of Soil Science and Plant Nutrition, 17(3), 581-593. https://doi.org/ 10.4067/S0718-95162017000300003
- Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
- Page, A.L. (1982). Methods of soil analysis: chemical and microbiological properties (Vol. 9). American Society of Agronomy.
- Ryu, H.D., Lim, C.S., Kang, M.K., & Lee, S.I. (2012). Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage. Journal of Hazardous Materials, 221, 248-255. https:// doi.org/10.1016/j.jhazmat.2012.04.038
- Seyhan, D. (2009). Country-scale phosphorus balancing as a base for resources conservation. Resources, Conservation and Recycling, 53(12), 698-709. https://doi.org/10.1016/j.resconrec.2009.05.001
- Talboys, P.J., Heppell, J., Roose, T., Healey, J.R., Jones, D.L., & Withers, P.J. (2016). Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant and Soil, 401, 109-123. https://doi.org/10.1007/s11104-015-2747-3
- Vysotskaya, L., Akhiyarova, G., Feoktistova, A., Akhtyamova, Z., Korobova, A., Ivanov, I., & Kudoyarova, G. (2020). Effects of phosphate shortage on root growth and hormone content of barley depend on capacity of the roots to accumulate ABA. Plants, 9(12), 1722. https://doi.org/10.3390/plants9121722
- Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
- Wen, G., Huang, L., Zhang, X., & Hu, Z. (2019). Uptake of nutrients and heavy metals in struvite recovered from a mixed wastewater of human urine and municipal sewage by two vegetables in calcareous soil. Environmental Technology & Innovation, 15, 100384. https://doi.org/10.1016/j.eti.2019.100384
- Xu, H., He, P., Gu, W., Wang, G., & Shao, L. (2012). Recovery of phosphorus as struvite from sewage sludge ash. Journal of Environmental Sciences, 24(8), 1533-1538. https://doi.org/10.1016/S1001-0742(11)60969-8
- Yuan, Z., Pratt, S., & Batstone, D.J. (2012). Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 23(6), 878-883. https://doi.org/10.1016/j.copbio.2012.08.001.
- Zin, M.M.T., & Kim, D.J. (2019). Struvite production from food processing wastewater and incinerated sewage sludge ash as an alternative N and P source: Optimization of multiple resources recovery by response surface methodology. Process Safety and Environmental Protection, 126, 242-249. https://doi.org/10.1016/j.psep. 2019.04.018
|