[1] G. Beyer, A. Satta, J. Schuhmacher, K. Maex, W. Besling, O. Kilpela, H. Sprey, and G. Tempel, “Development of sub-10-nm atomic layer deposition barriers for Cu/low-k interconnects”, Microelectronic Engineering, vol. 64, no.1-4, pp. 233-245, 2002. https://doi.org/10.1016/S0167-9317(02)00795-5
[2] Z. Li, Y. Tian, C. Teng, C. Teng, and H. Cao, “Recent Advances in Barrier Layer of Cu Interconnects”, Materials, vol. 13, no. 21, pp. 5049, 2020. https://doi.org/10.3390%2Fma13215049
[3] S. P. Murarka, and S. W.Hymes, “Copper metallization for ULSL and beyond”, Critical Reviews in Solid State and Materials Sciences, vol. 20, no. 2, pp. 87-124, 1995. https://doi.org/10.1080/10408439508243732
[4] A. E. Kaloyeros, and E. Eisenbraun, “Ultrathin Diffusion Barriers/Liners for Gigascale Copper Metallization”, Annual Review of Materials Science, vol. 30, pp. 363-385, 2000. https://doi.org/10.1146/annurev.matsci.30.1.363
[5] S. Armini, and P. M. Vereecken, “Impact of Terminal Effect on Cu Plating: Theory and Experimental Evidence”, ECS Trans, vol. 25, no. 27, pp. 185, 2010. DOI:10.1149/1.3318517
[6] J. S. Fang, T. P. Hsu, and G. S. Chen, “Crystallization and failure behavior of Ta-TM (TM=Fe, Co) nanostructured/amorphous diffusion barriers for copper metallization”, Journal of Electronic Materials, vol. 35, no.1, pp. 15-21, 2006.https://doi.org/10.1007/s11664-006-0178-x
[7] J. W. Choi, O. L. Guan, Y. J. Mao, H. B. M. Yusoff, J. L. Xie, C. C. Lan, W. L. Loh, B. L. Lau, L. L. H. Hong, L. G. Kian, and R. Murthy, “TSV Cu Filling Failure Modes and Mechanisms Causing the Failures”, IEEE Trans. Comp. Pack. Man. vol. 4, no. 4, pp. 581–587, 2014. https://doi.org/10.1109/TCPMT.2014.2298031
[8] K. Motoyama, O. V. D. Straten, J. Maniscalco, and M. He, “PVD Cu Reflow Seed Process Optimization for Defect Reduction in Nanoscale Cu/Low-k Dual Damascene Interconnects”, J. Electrochem. Soc. vol. 160, no. 12, 2013.
[9] J. P. Jacquemin, E. Labonne, C. Yalicheff, E. Royet, P. Vannier, R. Delsol, and P. Normandon, “TaN/Ta bilayer barrier characteristics and integration for 90 and 65 nm nodes”, Microelectronic Engineering, vol. 82, no.3-4, pp. 613-617, 2005. https://doi.org/10.1016/j.mee.2005.07.065
[10] K. Dittmar, H. J. Engelmann, M. E. Peikert, Wieser, and J. V. Borany, “Investigation of ultrathin tantalum based diffusion barrier films using AES and TEM”, Applied Surface Science, vol. 252, no. 1, pp. 185-188, 2005.
[11] D. J. Kim, Y. B. Jung, M. B. Lee, Y. H. Lee, and J. H. Lee, “Applicability of ALE TiN films as Cu/Si diffusion barriers”, Thin Solid Film, vol. 372, no.1-2, pp. 276-283, 2000. https://doi.org/10.1016/S0040-6090(00)01049-X
[12] A. Paranjpe, R. Bubber, L. Velo, G. Shang, S. Gopinath, J. Dalton, M. Moslehi, “CVD TaN barrier for copper metallization and DRAM bottom electrode”, IEEE International Interconnect Technology Conference proceedings, pp. 119-121, 1999. https://doi.org/10.1109/IITC.1999.787096
[13] R. Panwar, and A. Dhingra, “STUDY OF THERMAL STABILITY BEHAVIOR OF MON & WN THIN FILMS IN ULSI”, International Journal of Advances in Engineering & Technology, pp. 55-64, 2011.
[14] Ch. Kuo, Y. Chang, T. Huang, Ya, I. Ch. Ni, M.H. Chen, and Ch. I. Wu, “MoS2 as an Effective Cu Diffusion Barrier with a Back-End Compatible Process”, ACS Appl. Mater. Interfaces, vol. 15, no. 40, pp. 47845–47854, 2023. https://doi.org/10.1021/acsami.3c12267
[16] Y. Ezer, J. Haérkoénen, S. Arpiainen, V. Sokolov, P. Kuivalainen, J. Saarilahti, and J. Kaitila, “Diffusion Barrier Performance of thin Cr Films in the Cu/Cr/Si Structure”, Physica Scripta, vol. 1999, no. T79, pp. 228-231, 1999.
[17] Y. Zhao, G. Lu, “First-principles simulations of copper diffusion in tantalum and tantalum nitride”, Physics Review B, vol. 79, no. 21, 2009. https://doi.org/10.1103/PhysRevB.79.214104
[18] J. S. An, Y. Kwon, J. S. Oh, Ch. Choi, H. Kim, M. Lee, S. Pae, and Ch. W. Yang, “Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect”, ACS Applied Materials & Interfaces, vol. 12, no. 2, pp. 3104-3113, 2019. https://doi.org/10.1021/acsami.9b15562
[19] Y. H. Shin, and Y. Shimogaki, “Diffusion barrier property of TiN and TiN/ Al/TiN films deposited with FMCVD for Cu interconnection in ULSI”, Science and Technology of Advanced Materials, vol. 5, no. 4, pp. 399-405, 2004. https://doi.org/10.1016/j.stam.2004.02.001
[20] Sh. H. Hsieh, W. J. Chen, and Ch.M. Chien, “Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si”, Nanomaterials, vol. 5, no. 4, pp. 1840-1852, 2015. https://doi.org/10.3390/nano5041840
[21] Ch. L. Lo, M. Catalano, K. K. H. Smithe, L. Wang, Sh. Zhang, E. Pop, M.J. Kim, and Zh. Chen, “Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology”, npj 2D Materials and Applications, vol. 1, no. 42, 2017. https://doi.org/10.1038/s41699-017-0044-0
[22] L. Li, X. Chen, C. H. Wang, J. Cao, S. Lee, A. Tang, C. Ahn, S. S. Roy, M. S. Arnold, and H. S. P. Wong, “Vertical and lateral copper transport through graphene layers”, ACS Nano, vol. 9, no. 8, pp. 8361–8367, 2015. https://doi.org/10.1021/acsnano.5b03038
[23] B. S. An, Y. Kwon, S. J. Oh, M. Lee, S. Pae, and C. H. W. Yang, “Amorphous TaxMnyOz Layer as a Difusion Barrier for Advanced Copper Interconnects”, Scientific Reports, vol. 27, no. 9, pp. 20132, 2019. https://doi.org/10.1038/s41598-019-56796-y
[24] J. H. Bong, S. J. Yoon, A.Yoon, W. S. Hwang, and B. J. Cho, “Ultrathin graphene and graphene oxide layers as a diffusion barrier for advanced Cu metallization”, Applied Physics Letters, vol. 106, no. 6, 2015. https://doi.org/10.1063/1.4908559
[26] R. Cheung, J. Klein, K. Tsubouchi, M. Murakami, N. Kobayashi, Materials Research Society, Bahman 12, 1378 AP - Technology & Engineering - 765 pages.
[27] Y. G. Shen, Y. W. Mai, D. R. McKenzie, Q. C. Zhang, W. D. McFall, and W. E. McBride, “Composition, residual stress, and structural properties of thin tungsten nitride films deposited by reactive magnetron sputtering”, Journal of Applied Physics, vol. 88, pp. 1380-1388, 2000. https://doi.org/10.1063/1.373827
[28] W. Qingxiang, L. Shuhua, W. Xianhui, and F. Zhikang, “Diffusion barrier performance of amorphous W–Ti–N films in Cu metallization”, Vacuum, vol. 84, no. 11, pp. 1270-1274, 2010. https://doi.org/10.1016/j.vacuum.2010.02.002
[29] Frank R. Boer, “Cohesion in Metals: Transition Metal Alloys", North-Holland, Amsterdam, 1988.
[30] S. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu”, Journal of Applied Physics, Vol. 73, pp. 2301–2320, 1993. https://doi.org/10.1063/1.353135
[31] Von L. E. Toth, Transition Metal Carbides and Nitrides. Academic Press, New York–London 1971.
[32] M. Moriyama, T. Kawazoe, M. T. Anaka, and M. Murakami, “Correlation between microstructure and barrier properties of TiN thin films used Cu interconnects”, Thin Solid Films, vol. 416, no. 1-2, pp. 136-144, 2002. https://doi.org/10.1016/S0040-6090(02)00602-8
[33] W. Schlemminger, and D. Stark, “The influence of deposition temperature on the electrical resistance of thin Cu films”, Surface Science, vol. 189-190, pp. 1103-1110, 1987. https://doi.org/10.1016/S0039-6028(87)80556-3
[34] P. J. Sadashivaiah, T. Sankarappa, T. Sujatha, M. Santoshkumar, R. Rawat, P. Sarvanan, and A.K. Bhatnagar, “Structural, magnetic and electrical properties of Fe/Cu/Fe films”, Vacuum, vol. 85, no. 3, pp. 466-473, 2010. https://doi.org/10.1016/j.vacuum.2010.08.024
[36] W. T. Tseng, Y. L. Wang, and J. Niu, “Microstructure-related resistivity change after chemical-mechanical polish of Al and W thin films”, Thin Solid Films, vol. 370, no. 1-2, pp. 96-100, 2000. https://doi.org/10.1016/S0040-6090(00)00941-X
[37] M. Wen, Q. N. Meng, W. X. Yu, W. T. Zheng, S. X. Mao, and M. J. Hua, “Growth, stress and hardness of reactively sputtered tungsten nitride thin films”, Surface & Coatings Technology, vol. 205, no. 7, pp. 1953-1961, 2010. https://doi.org/10.1016/j.surfcoat.2010.08.082
[38] O. M. Artamonov, S. N. Samarin, and J. F. Williams, “Electron screening and electron–electron scattering mechanisms”, journal of Electron Spectroscopy and Related Phenomena, vol. 191, pp. 79-85, 2013. https://doi.org/10.1016/j.elspec.2013.11.005