- Aebi, H.E. (1983). Catalase in methods of enzyme analysis. Bergmeyer, 3, 273–285. https://doi.org/10.1016/B978-0-12-091302-2.50032-3
- Aghdam, M.S., & Bodbodak, S. (2014). Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology, 7, 37–53. https://doi.org/10.1007/s11947-013-1207-4
- Aghdam, M.S., Naderi, R., Jannatizadeh, A., Sarcheshmeh, M.A.A., & Babalar, M. (2016). Enhancement of postharvest chilling tolerance of anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Scientia Horticulturae, 198, 52–60. https://doi.org/10.22069/JOPP.2019.14927.2393
- Aghdam, M.S., Naderi, R., Sarcheshmeh, M.A.A., & Babalar, M. (2015). Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Postharvest Biology and Technology, 110, 70–76. https://doi.org/1016/j.postharvbio.2015.06.020
- Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
- Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/1146/annurev.arplant.55.031903.141701
- Billiard, F. (1997). Fruit cold storage: Techniques and equipment. International Symposium Effect of Pre-& Postharvest Factors in Fruit Storage, 485, 61–70. https://doi.org/10.17660/ActaHortic.1999.485.7
- Blokhina, O., Virolainen, E., & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage, and oxygen deprivation stress: A review. Annals of Botany, 91(2), 179–194. https://doi.org/10.1093/aob/mcf118
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
- Buege, J. A. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6
- Campos, P.S., Nia Quartin, V., Chicho Ramalho, J., & Nunes, M.A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Journal of Plant Physiology, 160(3), 283–292. https://doi.org/10.1078/0176-1617-00833
- Deewatthanawong, R., Nock, J.F., & Watkins, C.B. (2010). γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 Postharvest Biology and Technology, 57(2), 92–96. https://doi.org/10.1016/j.postharvbio.2010.03.003
- D’hont, A., Denoeud, F., Aury, J.M., Baurens, F.C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., & Rouard, M. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488, 213–217. https://doi.org/10.1038/nature11241
- Ding, Z., Tian, S., Zheng, X., Zhou, Z., & Xu, Y. (2007). Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia plantarum, 130, 112–121. https://doi.org/10.1111/j.1399-3054.2007.00893.x
- Elbagoury, M.M., Turoop, L., Runo, S., & Sila, D.N. (2021). Regulatory influences of methyl jasmonate and calcium chloride on chilling injury of banana fruit during cold storage and ripening. Food Science and Nutrition, 9(2), 929–942. https://doi.org/1002/fsn3.2058
- Fabi, C., Cachia, F., Conforti, P., English, A., & Moncayo, J. R. (2021). Improving data on food losses and waste: From theory to practice. Food Policy, 98, 101934. https://doi.org/10.1016/j.foodpol.2020.101934
- FAOSTAT, (2022). Available: http://www.fao.org/faostat/en/.
- Fernandes, F.A.N., Rodrigues, S., Gaspareto, O.C.P., & Oliveira, E.L. (2006). Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77(1), 188–193. https://doi.org/1016/j.jfoodeng.2005.05.058
- Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Habibi, F., Ramezanian, A., Rahemi, M., Eshghi, S., Guillén, F., Serrano, M., & Valero, D. (2019). Postharvest treatments with γ‐aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. Journal of the Science of Food and Agriculture, 99(14), 6408–6417. https://doi.org/10.1002/jsfa.9920
- Hardenburg, R.E., Watada, A.E., & Wang, C.Y. (1986). The commercial storage of fruits, vegetables, and florist and nursery stocks (Issue 66). US Department of Agriculture, Agricultural Research Service.
- Heli, Z., Hongyu, C., Dapeng, B., Yee Shin, T., Yejun, Z., Xi, Z., & Yingying, W. (2022). Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Frontiers in Nutrition, 9, 1076223. https://doi.org/10.3389/fnut.2022.1076223
- Herppich, W.B., & Zsom, T. (2021). Comprehensive assessment of the dynamics of banana chilling injury by advanced optical techniques. Applied Sciences, 11(23), 11433. https://doi.org/10.3390/app112311433
- Hilal, B., Khan, T.A., & Fariduddin, Q. (2023). Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. Plant Physiology and Biochemistry, 196, 1065-1083. https://doi.org/10.1016/j.plaphy.2023.03.006
- Janeczko, A., Hura, K., Skoczowski, A., Idzik, I., Biesaga-Kościelniak, J., & Niemczyk, E. (2009). Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. Acta Physiologiae Plantarum, 31, 71–79. https://doi.org/1007/s11738-008-0202-2
- Khademi, O., Ashtari, M., & Razavi, F. (2019). Effects of salicylic acid and ultrasound treatments on chilling injury control and quality preservation in banana fruit during cold storage. Scientia Horticulturae, 249, 334–339. https://doi.org/1016/j.scienta.2019.02.018
- Khaliq, G., Ali, S., Ejaz, S., Abdi, G., Faqir, Y., Ma, J., Siddiqui, M.W., & Ali, A. (2023). γ-Aminobutyric acid is involved in overlapping pathways against chilling injury by modulating glutamate decarboxylase and defense responses in papaya fruit. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1233477
- Liang, S., Kuang, J., Ji, S., Chen, Q., Deng, W., Min, T., Shan, W., Chen, J., & Lu, W. (2020). The membrane lipid metabolism in horticultural products suffering chilling injury. Food Quality and Safety, 4, 9–14. https://doi.org/10.1093/fqsafe/fyaa001
- Luo, L., Lin, S., Zheng, H., Lei, Y., Zhang, Q., & Zhang, Z. (2007). The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings. Forestry Studies in China, 9, 107–113. https://doi.org/10.1007/s11632-007-0016-0
- Luyckx, A., Lechaudel, M., Hubert, O., Salmon, F., & Brat, P. (2016). Banana peel physiological post-harvest disorders: A review. MOJ Food Processing & Technology, 3(1), https://doi.org/10.15406/MOJFPT.2016.03.00060
- Ma, P., Li, T., Ji, F., Wang, H., & Pang, J. (2015). Effect of GABA on blood pressure and blood dynamics of anesthetic rats. International Journal of Clinical and Experimental Medicine, 8(8), 14296.
- Maehly, A., & Chance, B. (1954). Catalases and peroxidases. Methods Biochem Anal, 1, 357–424. https://doi.org/1002/9780470110171.ch14
- Malekzadeh, P., Khosravi-Nejad, F., Hatamnia, A.A., & Sheikhakbari Mehr, R. (2017). Impact of postharvest exogenous γ-aminobutyric acid treatment on cucumber fruit in response to chilling tolerance. Physiology and Molecular Biology of Plants, 23, 827–836. https://doi.org/1007/s12298-017-0475-2
- Marangoni, A.G., Palma, T., & Stanley, D.W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7(3), 193–217. https://doi.org/10.1016/0925-5214(95)00042-9
- Mditshwa, A., Khaliq, G., Hussein, Z., & Ejaz, S. (2023). Sustainable postharvest management practices for fresh produce. Frontiers in Sustainable Food Systems, 7, 1143759. https://doi.org/10.3389/fsufs.2023.1143759
- Mohammadrezakhani, S., Hajilou, J., Rezanejad, F., & Zaare-Nahandi, F. (2019). Assessment of exogenous application of proline on antioxidant compounds in three Citrus species under low temperature stress. Journal of Plant Interactions, 14(1), 347–358. https://doi.org/10.1080/17429145.2019.1629033
- Moradi, M., Razavi, F., Rabiei, V., Soleimani Aghdam, M., & Salehi, L. (2019). The effect of gamma aminobutyric acid (GABA) treatment on post-harvest frostbite of tomato fruit. Horticultural Sciences, 34, 221-230. (In Persian). https://doi.org/22067/JHORTS4.V34I2.78718
- Murata, T. (1969). Physiological and biochemical studies of chilling injury in bananas. Physiologia Plantarum, 22(2), 401–411. https://doi.org/10.1111/j.1399-3054.1969.tb07392.x
- Nakano, Y., & Asada, K. (1980). Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant and Cell Physiology, 21(8), 1295–1307. https://doi.org/10.1093/oxfordjournals.pcp.a076128
- Ngaffo Mekontso, F., Duan, W., Cisse, E.H.M., Chen, T., & Xu, X. (2021). Alleviation of postharvest chilling injury of carambola fruit by γ-aminobutyric acid: Physiological, biochemical, and structural characterization. Frontiers in Nutrition, 8, 752583. https://doi.org/10.3389/fnut.2021.752583
- Nguyen, T.B.T., Ketsa, S., & Van Doorn, W.G. (2003). Relationship between browning and the activities of polyphenoloxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biology and Technology, 30(2), 187–193. https://doi.org/10.1016/S0925-5214(03)00103-0
- Pongprasert, N., Sekozawa, Y., Sugaya, S., & Gemma, H. (2011). A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel. Scientia Horticulturae, 130(1), 73–77. https://doi.org/1016/j.scienta.2011.06.006
- Promyou, S., Ketsa, S., & van Doorn, W.G. (2008). Hot water treatments delay cold-induced banana peel blackening. Postharvest Biology and Technology, 48(1), 132–138. https://doi.org/10.1016/j.postharvbio.2007.09.006
- Rabiei, V., Kakavand, F., Zaare‐Nahandi, F., Razavi, F., & Aghdam, M.S. (2019). Nitric oxide and γ-aminobutyric acid treatments delay senescence of cornelian cherry fruits during postharvest cold storage by enhancing antioxidant system activity. Scientia Horticulturae, 243, 268–273. https://doi.org/10.1016/j.scienta.2018.08.034
- Ramos-Ruiz, R., Martinez, F., & Knauf-Beiter, G. (2019). The effects of GABA in plants. Cogent Food and Agriculture, 5, 1670553. https://doi.org/10.1080/23311932.2019.1670553
- Renaut, J., Hausman, J., & Wisniewski, M.E. (2006). Proteomics and low‐temperature studies: bridging the gap between gene expression and metabolism. Physiologia Plantarum, 126(1), 97–109. https://doi.org/10.1111/j.1399-3054.2006.00617.x
- Saadati, S., Baninasab, B., Mobli, M., & Gholami, M. (2019). Measurements of freezing tolerance and their relationship with some biochemical and physiological parameters in seven olive cultivars. Acta Physiologiae Plantarum, 41, 1–11. https://doi.org/1007/s11738-019-2843-8
- Sairam, R.K., & Saxena, D.C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1), 55–61. https://doi.org/10.1046/j.1439-037x.2000.00358.x
- Sanna, D., Delogu, G., Mulas, M., Schirra, M., & Fadda, A. (2012). Determination of free radical scavenging activity of plant extracts through DPPH assay: An EPR and UV–Vis study. Food Analytical Methods, 5, 759–766. https://doi.org/1007/s12161-011-9306-1
- Shang, H., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. Journal of Agricultural and Food Chemistry, 59(4), 1264–1268. https://doi.org/1021/jf104424z
- Shi, Q., Ding, F., Wang, X., & Wei, M. (2007). Exogenous nitric oxide protects cucumber roots against oxidative stress induced by salt stress. Plant Physiology and Biochemistry, 45(8), 542–550. https://doi.org/1016/j.plaphy.2007.05.005
- Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba) under NaCl salinity. Plant Science, 161(3), 613–619. https://doi.org/10.1016/S0168-9452(01)00450-2
- Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126(1), 45–51. https://doi.org/10.1111/j.1399-3054.2005.00582.x
- Valenzuela, J.L., Manzano, S., Palma, F., Carvajal, F., Garrido, D., & Jamilena, M. (2017). Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. International Journal of Molecular Sciences, 18(7), 1467. https://doi.org/3390/ijms18071467
- Vijayakumari, K., & Puthur, J.T. (2016). γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum plants subjected to PEG-induced stress. Plant Growth Regulation, 78, 57–67. https://doi.org/10.1007/s10725-015-0074-6
- Wang, N.N., Yang, Y.C., Sun, D.W., Pu, H., & Zhu, Z. (2015). Shelf-life prediction of ‘Gros Michel’bananas with different browning levels using hyperspectral reflectance imaging. Food Analytical Methods, 8, 1173–1184. https://doi.org/1007/s12161-014-9960-1
- Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S., & Du, R. (2014). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 168, 132–137. https://doi.org/1016/j.scienta.2014.01.022
- Wisniewski, M., Bassett, C., & Gusta, L.V. (2003). An overview of cold hardiness in woody plants: Seeing the forest through the trees. HortScience, 38(5), 952–959. https://doi.org/21273/HORTSCI.38.5.952
- Wolfe, J.O.E. (1978). Chilling injury in plants—the role of membrane lipid fluidity. Plant, Cell and Environment, 1(4), 241–247. https://doi.org/10.1111/j.1365-3040.1978.tb02036.x
- Yang, A., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chemistry, 129(4), 1619–1622. https://doi.org/10.1016/j.foodchem.2011.06.018
- Zhou, C., Dong, W., Jin, S., Liu, Q., Shi, L., Cao, S., Li, S., Chen, W., & Yang, Z. (2022). γ-Aminobutyric acid treatment induced chilling tolerance in postharvest peach fruit by upregulating ascorbic acid and glutathione contents at the molecular level. Frontiers in Plant Science, 13, 1059979. https://doi.org/10.3389/fpls.2022.1059979
- Zhu, X., Luo, J., Li, Q., Li, J., Liu, T., Wang, R., Chen, W., & Li, X. (2018). Low-temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 146, 68–78. https://doi.org/1016/j.postharvbio.2018.08.015
- Zsom, T., Strohmayer, E., Phuong Le Nguyen, L., Hitka, G., & Zsom-Muha, V. (2018). Chilling injury investigation by non-destructive measuring methods during banana cold storage. Progress in Agricultural Engineering Sciences, 14, 147–158. https://doi.org/1556/446.14.2018.S1.14
|