- Allison, L.E. (1965). Organic carbon. Methods of soil analysis/Madison, Wisc, 1367-1376.
- Augusto, L., Ranger, J., Binkley, D., & Rothe, A. (2002). Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59(3), 233-253. https://doi.org/10.1051/forest:2002020
- Beuschel, R., Piepho, H.P., Joergensen, R.G., & Wachendorf, C. (2020). Impact of willow-based grassland alley cropping in relation to its plant species diversity on soil ecology of former arable land. Applied Soil Ecology, 147, 103373. https://doi.org/10.1016/j.apsoil.2019.103373
- Blake, G.R., & Hartge, K.H. (1986). Particle density. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 377-382. https://doi.org/10.2136/sssabookser5.1.2ed.c14
- Boudjabi, S., & Chenchouni, H. (2022). Soil fertility indicators and soil stoichiometry in semi-arid steppe rangelands. Catena, 210, 105910. https://doi.org/10.1016/j.catena.2021.105910
- Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
- Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837-842.
- Cambardella, C.A., Gajda, A.M., Doran, J.W., Wienhold, B.J., Kettler, T.A., & Lal, R. (2001). Estimation of particulate and total organic matter by weight loss-on-ignition. Assessment Methods for Soil Carbon, 349-359.
- Carpenter, D.R., & Chong, G.W. (2010). Patterns in the aggregate stability of Mancos Shale derived soils. Catena, 80(1), 65-73.
- Chen, Y., Wei, T., Sha, G., Zhu, Q., Liu, Z., Ren, K., & Yang, C. (2022). Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. Applied Soil Ecology, 170, 104292. https:// doi.org/10.1016/j.apsoil.2021.104292
- Gee, G.W., & Orr, D. (2002). Particle-Size Analysis. 255-289. Methods of soil analysis. Part, 4.
- Guimarães, D.V., Gonzaga, M.I.S., da Silva, T.O., da Silva, T.L., da Silva Dias, N., & Matias, M.I.S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126, 177-182. https://doi.org/10.1016/j.still.2012.07.010
- Jafari, M., & Sarmadian, F. (2003). Fundamentals of Soil Science and Soil Classification. University of Tehran Press. First Edition. (In Persian)
- Khatoony, N., & Kolahi, M. (2021). Investigation role and function of rangelands on water. Journal of Water and Sustainable Development, 8(2), 91-104. https://doi.org/10.22067/jwsd.v8i2.1004
- Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193, 104621. https://doi.org/10.1016/j.catena.2020.104621
- Kooch, Y., Mehr, M.A., & Hosseini, S.M. (2020). The effect of forest degradation intensity on soil function indicators in northern Iran. Ecological Indicators, 114, 106324. https://doi.org/10.1016/j.ecolind.2020.106324
- Kooch, Y., Rostayee, F., & Hosseini, S.M. (2016). Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena, 144, 65-73. https://doi.org/10.1016/j.catena.2016. 05.002
- Kotzé, E., Loke, P.F., Akhosi-Setaka, M.C., & Du Preez, C.C. (2016). Land use change affecting soil humic substances in three semi-arid agro-ecosystems in South Africa. Agriculture, Ecosystems & Environment, 216, 194-202. https://doi.org/10.1016/j.agee.2015.10.007
- Kumar, K.A.U.S.H.A.L., Tripathi, S.K., & Bhatia, K.S. (1995). Erodibility characteristics of Rendhar watershed soils of Bundelkhand. Indian Journal of Soil Conservation, 23(3), 200-204.
- Lai, Z., Zhang, Y., Liu, J., Wu, B., Qin, S., & Fa, K. (2016). Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China. Forest Ecology and Management, 359, 381-388. https://doi.org/10.1016/j.foreco.2015.04.025
- Levula, J., Ilvesniemi, H., & Westman, C.J. (2003). Relation between soil properties and tree species composition in a Scots pine-Norway spruce stand in southern Finland. Silva Fennica, 37(2), 205-218.
- Li, Y., Zhou, W., Jing, M., Wang, S., Huang, Y., Geng, B., & Cao, Y. (2022). Changes in reconstructed soil physicochemical properties in an opencast mine dump in the Loess Plateau Area of China. International Journal of Environmental Research and Public Health, 19(2), 706. https://doi.org/10.3390/ijerph19020706
- Liu, D., Huang, Y., An, S., Sun, H., Bhople, P., & Chen, Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 162, 345-353. https://doi.org/ 10.1016/j.catena.2017.10.028
- López, R., Gondar, D., Iglesias, A., Fiol, S., Antelo, J., & Arce, F. (2008). Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. European Journal of Soil Science, 59(5), 892-899. https://doi.org/10.1111/j.1365-2389.2008.01048.x
- Mojtahedi, M.R., & Nik Nahad Qormakher, H. (2013). The effect of changing pasture land use on some physical and chemical properties of soil. First National Conference on Natural Resources Management, 16 pages. (In Persian)
- Moscatelli, M.C., Di Tizio, A., Marinari, S., & Grego, S. (2007). Microbial indicators related to soil carbon in Mediterranean land use systems. Soil and Tillage Research, 97(1), 51-59. https://doi.org/10.1016/j.still.2007.08.007
- Moscatelli, M.C., Marabottini, R., Massaccesi, L., & Marinari, S. (2022). Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Regional, 29, e00500. https:// doi.org/10.1016/j.geodrs.2022.e00500
- Muhammad, S., Müller, T., & Joergensen, R.G. (2008). Relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab. Journal of Arid Environments, 72(4), 448-457. https://doi.org/10.1016/j.jaridenv.2007.06.016
- Neher, D.A., Wu, J., Barbercheck, M.E., & Anas, O. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30(1), 47-64. https://doi.org/10.1016/j.apsoil.2005.01.002
- Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961-1010. https://doi.org/10.2136/sssabookser5.3.c34
- Olaniya, M., Bora, P.K., Das, S., & Chanu, P.H. (2020). Soil erodibility indices under different land uses in Ri-Bhoi district of Meghalaya (India). Scientific Reports, 10(1), 14986. https://doi.org/10.1038/s41598-020-72070-y
- Osman, K.T., & Osman, K.T. (2013). Physical properties of forest soils. Forest Soils: Properties and Management, 19-44.
- Parkinson, D., & Coleman, D.C. (1991). Microbial communities, activity and biomass. Agriculture, Ecosystems & Environment, 34(1-4), 3-33. https://doi.org/10.1016/0167-8809(91)90090-K
- Plaster, E.J. (1985). Soil science and management. Delmar Publishers Inc., Albany, p 124.
- Qu, L., Huang, Y., Ma, K., Zhang, Y., & Biere, A. (2016). Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China. Soil Biology and Biochemistry, 94, 1-9. https://doi.org/10.1016/ j.soilbio.2015.11.004
- Sala, O.E., Yahdjian, L., Havstad, K., & Aguiar, M.R. (2017). Rangeland ecosystem services: Nature’s supply and humans’ demand. Rangeland systems: Processes, Management and Challenges, 467-489. https://doi.org/ 10.1007/978-3-319-46709-2
- Schwendenmann, L., Veldkamp, E., Brenes, T., O'brien, J.J., & Mackensen, J. (2003). Spatial and temporal variation in soil CO2 efflux in an old-growth Neotropical rain forest, La Selva, Costa Rica. Biogeochemistry, 64, 111-128. https://doi.org/10.1023/A:1024941614919
- Seyghalani, S., Ramezanpour, H., & Kahneh, E. (2015). Effect of Populus caspica, Alnus glutinosa and Taxodium distichum on some soil chemical properties in Forestlands of Astaneh Ashrafieh. Iranian Journal of Soil Research, 29(2), 233-241. (In Persian with English abstract). https://doi.org/10.22092/ijsr.2015.102217
- Shahpiri, A. (2022). Analysis of the variability of detritivores and decomposer organisms in relation to the stoichiometry of plant and soil quality characteristics. Master's thesis on rangeland, Tarbiat Modares University, 180 pages. (In Persian with English abstract)
- Sigurðsson, B.D., & Guðleifsson, B.E. (2013). Impact of afforestation on earthworm populations in Iceland.
- Sircely, J., Conant, R.T., & Boone, R.B. (2019). Simulating rangeland ecosystems with G-Range: model description and evaluation at global and site scales. Rangeland Ecology & Management, 72(5), 846-857. https://doi.org/ 10.1016/j.rama.2019.03.002
- Soltani Toolarood, A.A., Einazi Nai, M., Shahab, H., Ghavidel, A., & Ghasemi, S. (2019). Determination of the most important microbial indicators as soil health index in Cadmium and Lead contaminated soils. Journal of Environmental Science Studies, 4(1), 1142-1150. (In Persian with English abstract)
- Tan, K.H. (2005). Soil Sampling, Preparation, and Analysis (2nd ed.). CRC Press. https://doi.org/10.1201/ 9781482274769
- Vorobeichik, E.L. (1997). On the methods for measuring forest litter thickness to diagnose the technogenic disturbances of ecosystems. Russian Journal of Ecology, 28(4), 230-234.
- Wang, B., Liu, G.B., Xue, S., & Zhu, B. (2011). Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environmental Earth Sciences, 62, 915-925. https://doi.org/10.1007/s12665-010-0577-4
- Weidlich, E.W., Flórido, F.G., Sorrini, T.B., & Brancalion, P.H. (2020). Controlling invasive plant species in ecological restoration: A global review. Journal of Applied Ecology, 57(9), 1806-1817. https://doi.org/10.1111/ 1365-2664.13656
- Wen, L., Lei, P., Xiang, W., Yan, W., & Liu, S. (2014). Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management, 328, 150-158. https://doi.org/10.1016/j.foreco.2014.05.037
- Woloszczyk, P., Fiencke, C., Elsner, D.C., Cordsen, E., & Pfeiffer, E.M. (2020). Spatial and temporal patterns in soil organic carbon, microbial biomass and activity under different land-use types in a long-term soil-monitoring network. Pedobiologia, 80, 150642. https://doi.org/10.1016/j.pedobi.2020.150642
- Wulanningtyas, H.S., Gong, Y., Li, P., Sakagami, N., Nishiwaki, J., & Komatsuzaki, M. (2021). A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation. Soil and Tillage Research, 205, 104749. https://doi.org/10.1016/j.still.2020.104749
- Yang,, Zhu, J., Zhang, M., Yan, Q., & Sun, O.J. (2010). Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology, 3(3), 175-182. https://doi.org/10.1093/jpe/rtq022
- Yoder, R.E. (1936). Direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy, 28(5).
- Zhang, Y., Xu, X., Li, Z., Liu, M., Xu, C., Zhang, R., & Luo, W. (2019). Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 650, 2657-2665. https://doi.org/10.1016/j.scitotenv.2018.09.372
|