- Agbovi, H.K., & Wilson, L.D. (2021). Adsorption processes in biopolymer systems: fundamentals to practical applications. p.1-51. In: Kalia S. (ed.) Natural Polymers-Based Green Adsorbents for Water Treatment. Indian Military Academy, Dehradun, India.
- Al-Ghouti, M.A., & Da'ana, D.A. (2020).Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
- Allard, B., Hakansson K., & Karlsson S. (1986). The importance of sorption phenomena in relation to trace element speciation and mobility in speciation of metals in water, sediment and soil systems. p. 99-112. In Landner L. (ed.) Lecture Notes in Earth Sciences, no. 11. Springer, Berlin.
- Allen, E.R., Ming, D.W., Hossner, L.R., & Henninger, D.L. (1995). Modeling transport kinetics in clinoptilolite‐phosphate rock systems. Soil Science Society of America Journal, 59(1), 248-255. https://doi.org/2136/sssaj1995. 03615995005900010039x
- Allison, L.E., & Moodie, C.D. (1965). Carbonates. p. 1379-1396. In: Black C.A. (ed.) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. ASA & SSSA, Madison, Wis., USA.
- Ardean, C., Ciopec, M., Davidescu, C.M., Negrea, P., & Voda, R. (2020). Kinetics and thermodynamics studies for cadmium (II) adsorption onto functionalized chitosan with hexa-decyl-trimethyl-ammonium chloride. Materials, 13(23), 5552. https://doi.org/10.3390/ma13235552
- Azhar, M., ur Rehman, M.Z., Ali, S., Qayyum, M.F., Naeem, A., Ayub, M.A., ul Haq, M.A., Iqbal, A., & Rizwan, M. (2019). Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. Chemosphere, 227, 72-81. https://doi.org/1016/ j.chemosphere.2019.04.041
- Bansal, R.C., Donnet, J.B., & Stoeckli, F. (1988). Active carbon. Marcel Dekker Inc., New York, USA.
- Bashir, S., Rizwan, M.S., Salam, A., Fu, Q., Zhu, J., Shaaban, M., & Hu, H. (2018). Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: extraction techniques and adsorption mechanism. Bulletin of Environmental Contamination and Toxicolgy, 100, 727–732. https://doi.org/1007/s00128-018-2310-z
- Boostani, H.R., Najafi-Ghiri, M., & Hardie, A.G. (2019). Single and competitive adsorption isotherms of some heavy metals onto a light textured calcareous soil amended with agricultural wastes-biochars. Archives of Agronomy and Soil Science, 65(3), 360-373. https://doi.org/10.1080/03650340.2018.1503651
- Chapman, H.D. (1965). Cation Exchange Capacity. p. 891-901. In: Black C.A. (ed) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. ASA & SSSA, Madison, Wis., USA.
- Creamer, E., Gao, B., Zimmerman, A., & Harris, W. (2018). Biomass-facilitated production of activated magnesium oxide nanoparticles with extraordinary CO2 capture capacity. Chemical Engineering Journal,334, 81-88. https://doi.org/10.1016/j.cej.2017.10.035
- Deng, Y., Li, X., Ni, F., Liu, Q., Yang, Y., Wang, M., Ao, T & Chen, W. (2021). Synthesis of magnesium modified biochar for removing copper, lead and cadmium in single and binary systems from aqueous solutions: adsorption mechanism. Water, 13(5), 599. https://doi.org/10.3390/w13050599
- Gao, X., Peng, Y., Zhou, Y., Adeel, M., & Chen, Q. (2019). Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis). Journal of Environmental Management, 251, 109610. https://doi.org/10.1016/j.jenvman.2019.109610
- Gee, G.W., & Or, D. (2002). Partical Size Analysis. p. 201–214. In: Dane, J.H. and Topp, G.C. (eds) Methods of Soil Analysis. Part 4. Physical Methods. ASA & SSSA, Madison, Wis., USA.
- Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health,17(11), 3782 https://doi.org/10.3390/ ijerph17113782
- Golami, H., & Rahimi, G. (2020). The effect of carrot pulp derived biochar on the adsorption of cadmium and lead in an acidic soil. Journal of Water and Soil Conservation, 27(2), 1-23. (In Persian). https://doi.org/10.22069/JWSC. 2020.16807.3230
- Hansen, J.C., & Strawn, D.G. (2003). Kinetics of phosphorus release from manure-amended alkaline soil. Soil Science,168(12), 869-879. https://doi.org/10.1097/01.ss.0000106408.84926.8f
- Ho, Y.S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332-340. https://doi.org/10.1205/ 095758298529696
- Hussain, B., Ashraf, M.N., Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Science of The Total Environment, 754, 142188. https://doi.org/10.1016/j.scitotenv.2020.142188
- Jedynak, K., & Charmas, B. (2021). Preparation and characterization of physicochemical properties of spruce cone biochars activated by CO2. Materials, 14, 3859. https://doi.org/10.3390/ma14143859
- Jiang, D., Chu, B., Amano, Y., & Machida, M. (2018). Removal and recovery of phosphate from water by Mg-laden biochar: batch and column studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 429-437. https://doi.org/10.1016/j.colsurfa.2018.09.016
- John, M. (1972). Cadmium adsorption maxima of soils as measured by the Langmuir model. Canadian Journal of Soil Science, 52, 343-350. https://doi.org/10.4141/cjss72-046
- Khan, Z.H., Gao, M., Qiu, W., & Song, Z. (2021b). Mechanism of novel MoS2-modified biochar composites for removal of cadmium (II) from aqueous solutions. Environmental Science and Pollution Research, 28, 34979–34989. https://doi.org/10.1007/s11356-021-13199-9
- Khan, M.A., Khan, S., Ding, X., Khan, A., & Alam, M. (2018). The effects of biochar and rice husk on adsorption and desorp-tion of cadmium on to soils with different water conditions (upland and saturated). Chemosphere, 193, 1120–1126. https://doi.org/10.1016/j.chemosphere.2017.11.110
- Khan, S., Naushad, M., Lima, E.C., Zhang, S., Shaheen, S.M., & Rinklebe, J. (2021a). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies–A review. Journal of Hazardous Materials, 417, 126039. https://doi.org/10.1016/j.jhazmat.2021.126039
- Kolodynska, D., Wnetrzak, R., Leahy, J.J., Hayes, M.H.B., Kwapinski, W., & Hubicki Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295-305. https:// doi.org/10.1016/j.cej.2012.05.025
- Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920-931. https://doi.org/ 10.1016/j.jplph.2006.11.014.
- Kubier, A., Wilkin, R.T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388
- Kumar, P.S., Ramakrishnan K., Dinesh Kirupha, S., & Sivanesan, S. (2010). Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazilian Journal of Chemical Engineering, 27(2), 347–355. https://doi.org/10.1590/S0104-66322010000200013
- Kumar, P.S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S.D., Murugesan, A., & Sivanesan, S. (2012). Removal of cadmium (II) from aqueous solution by agricultural waste cashew nut shell. Korean Journal of Chemical Engineering, 29(6), 756-768. https://doi.org/10.1007/s11814-011-0259-2
- Li, Hongbo, Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y., & Ma, L.Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere,178, 466–478. https://doi.org/10.1016/ j.chemosphere.2017.03.072
- Li, Y., Yu, H., Liu, L., & Yu, H. (2021). Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. Journal of Hazardous Materials,420, 126655. https://doi.org/10.1016/j.jhazmat.2021.126655
- Li, L., Long, A., & Fossum, B. (2023). Michael Kaiser effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta-analysis. Soil Use and Management 39, 43–52. https://doi.org/10.1111/sum.12848
- Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Liu, , Frenkel, A.I., Vairavamurthy, A., & Huang, P.M. (2001). Sorption of cadmium on humic acid: Mechanistic and kinetic studies with atomic force microscopy and X-ray absorption fine structure spectroscopy. Canadian Journal of Soil Science, 81(3), 337-348. https://doi.org/10.4141/S00-070
- Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2012). Cadmium sorption and desorption in soils: A review. Critical Reviews in Environmental Science and Technology, 42(5), 489–533. https://doi.org/10.1080/ 10643389.2010.520234
- Nelson, D.W., & Sommers L.E. (1996). Total Carbon, Organic Carbon, and Organic Matter. p. 961-1010. In: Sparks D.L. (ed.) Methods of Soil Analysis, Part 3. Chemical Methods. ASA & SSSA, Madison, Wis., USA.
- Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205. https://doi.org/10.1016/j.chemosphere. 2020.129205.
- Qiu, Y., Zhang, Q., Li, M., Fan, Z., Sang, W., Xie, C., & Niu, D. (2019). Adsorption of Cd (II) from aqueous solutions by modified biochars: comparison of modification methods. Water, Air, & Soil Pollution, 230(4), 1-11. https://doi.org/10.1007/s11270-019-4135-8
- Rhoades, J.D. (1996). Salinity: Electrical Conductivity and Total Dissolved Solids. p. 417-43. In: Sparks D.L. (ed.) Methods of Soil Analysis, Part 3. Chemical Methods. ASA & SSSA, Madison, Wis., USA.
- Richards, L.A. (1954). Diagnosis and Improvement of Saline Alkali Soils. Agriculture Handbook no. 60. US Department of Agriculture, Washington DC.
- Saffari, M., Saffari, V.R., Aliabadi, M.M., Haghighi, M.J., & Moazallahi, M. (2016). Influence of organic and inorganic amendments on cadmium sorption in a calcareous soil. Main Group Metal Chemistry,39(5-6), 195-207. https://doi.org/10.1515/mgmc-2016-0028
- Sahoo, S.S., Vijay, V.K., Chandra R., & Kumar, H.(2021). Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology, 3, 100101. https:// doi.org/10.1016/j.clet.2021.100101
- Shan, R., Li, W., Chen, Y., & Sun, X. (2020). Effects of Mg-modified biochar on the bioavailability of cadmium in soil. BioResources,15(4), 8008. https://doi.org/10.15376/biores.15.4.8008-8025
- Shen, Z., Som, A.M., Wang, F., Jin, F., McMillan, O., & Al-Tabbaa, A. (2016a). Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Science of the Total Environment, 542, 771–776. https://doi.org/10.1016/j.scitotenv.2015.10.057
- Shen, Z., McMillan, O., Jin, F., & Al-Tabbaa, A. (2016b). Salisbury biochar did not affect the mobility or speciation of lead in kaolin in a short-term laboratory study. Journal of Hazardous Materials, 316, 214-220. https://doi.org/ 10.1016/j.jhazmat.2016.05.042
- Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017). Biochar: A guide to analytical methods. Csiro Publishing, Australia.
- Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38. https://doi.org/10.1016/j.jcis.2005.04.036
- Sizmur, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology,246, 34-47. https://doi.org/10.1016/j.biortech.2017.07.082
- Soleymanian, S., Norouzi, Z.G., Dorostkar,V., Movahednejad, M.H., & Rezakhazemi, M. (2022). Adsorption isotherm and kinetic models for cadmium removal from polluted water using clay, biochar and their complex. Iran Journal of Soil Water Research, 53(3), 485-500. (In Persian) https://doi.org/10.22059/ijswr.2022.333498.669121
- Song, J., Li, Y., Wang, Y., Zhong, L., Liu, Y., Sun, X., He, B., Li, Y., & Cao, S. (2021). Preparing biochars from cow hair waste produced in a tannery for dye wastewater treatment. Materials, 14(7), 1690. https://doi.org/ 10.3390/ma14071690
- Sparks, D.L. (1989). Kinetics of Soil Chemical Processes. Academic Press, New York.
- Spokas, K.A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1, 289-303. https://doi.org/4155/cmt.10.32
- Tao, Q., Li, B., Li, Q., Han, X., Jiang, Y., Jupa, R., Wang, C., & Li, T. (2019). Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata. Science of the Total Environment, 659, 1448-1456. https://doi.org/10.1016/j.scitotenv.2019.12.361
- Thomas, G.W. (1996). Soil pH and Soil Acidity. p. 475-490. In: Sparks D.L. (ed.) Methods of Soil Analysis, Part 3. Chemical Methods. ASA & SSSA, Madison, Wis., USA.
- Tóth, G., Hermann, T., Da Silva, M.R., & Montanarella, C. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309. https://doi.org/10.1016/ j.envint.2015.12.017
- Usman, A.R.A., Sallam, A.Sh., Al-Omran, A., El-Naggar, A.H., Alenazi, K.K.H., Nadeem, M., & Al-Wabel, M.I. (2013). Chemically modified biochar produced from conocarpus wastes: An efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science and Technology, 31(7), 573-657. https://doi.org/10.1260/0263-6174.31.7.625
- Wang, H., Gao, B., Wang, S., Fang, J., Xue, Y., & Yang, K. (2015). Removal of Pb (II), Cu (II), and Cd (II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197, 356-362. https://doi.org/10.1016/j.biortech.2015.08.132
- Wu, J.H., Song, Q.M., Zhou, J.Y., Wu, Y.X., Liu, X.W., Liu, J.J., Zhou, L.L., Wu, Z.H., & Wu, W.C. (2021a). Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa Cadmium accumulation: Influential factors and prediction model. Ecotoxicology and Environmental Safety, 208, 111420. https://doi.org/10.1016/j.ecoenv.2020.111420
- Wu, J., Wang, T., Wang, J., Zhang, Y., & Pan, W.P. (2021b). A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Science of the Total Environment, 754, 142150. https://doi.org/10.1016/j.scitotenv.2020.142150
- Xiang, J., Lin, Q., Yao, X., & Yin, G. (2021). Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environmental Research,195, 110650. https:// doi.org/10.1016/j.envres.2020.110650.
- Xiang, J., Lin, Q., Cheng, S., Guo, J., Yao, X., Liu, Q., Yin, G., & Liu, D. (2018). Enhanced adsorption of Cd(II) from aqueous solution by a magnesium oxide–rice husk biochar composite. Environmental Science and Pollution Research, 25(14), 14032-14042. https://doi.org/10.1007/s11356-018-1594-1
- Xiao, R., Wang, J.J., Li, R., Park, J., Meng, Y., Zhou, B., Pensky, S., & Zhang, Z. (2018). Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere, 208, 408-416. https://doi.org/10.1016/j.chemosphere.2018.05.175
- Xu, Z., Lin, Y., Lin, Y., Yang, D., & Zheng, H. (2021). Adsorption behaviors of paper mill sludge biochar to remove Cu, Zn and As in wastewater. Environmental Technology and Innovation, 23, 101616. https://doi.org/10.1016/ j.eti.2021.101616
- Yin, G., Tao, L., Chen, X., Bolan, N.S., Sarkar, B., Lin, Q., & Wang, H. (2021). Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions. Journal of Hazardous Materials, 420, 126487. https://doi.org/10.1016/j.jhazmat.2021.126487
- Zhang, J., Hu, X., Yan, J., Long, L., & Xue, Y. (2020). Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution. Environmental Science and Pollution Research, 27(9), 9582-9588. https://doi.org/10.1007/s11356-020-07631-9
- Zhang, L., & Song, F.B. (2005). Sorption and desorption characteristics of cadmium by four different soils in northeast China. Chinese Geographical Science, 15(4), 343-347. https://doi.org/10.1007/s11769-005-0023-9
- Zhu, S., Zhao, J., Zhao, N., Yang, X., Chen, C., & Shang, J. (2020). Goethite modified biochar as a multifunctional amendment for cationic Cd (II), anionic As (III), roxarsone, and phosphorus in soil and water. Journal of Cleaner Production, 247, 119579. https://doi.org/10.1016/j.jclepro.2019.119579
- Zou, M., Zhou, S., Zhou, Y., Jia, Z., Guo, T., & Wang, J.(2022). Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environmental Pollution, 280, 116965. https://doi.org/10.1016/ j.envpol.2021.116965
|