Aguilera, E., Lassaletta, L., Gattinger, A., & Gimeno, B. S. (2013). Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agriculture, Ecosystems & Environment, 168, 25-36. https://doi.org/10.1016/j.agee.2013.02.003
Ahmad Dar, J., & Somaiah, S. (2015). Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India. Environmental Monitoring and Assessment, 187, 1-15. https://doi.org/10.1007/s10661-014-4204-9
Banday, M., Bhardwaj, D. R., & Pala, N. A. (2019). Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India. Acta Ecologica Sinica, 39(1), 50-55. https://doi.org/10.1016/j.chnaes.2018.06.001
Bangroo, S. A., Najar, G. R., & Rasool, A. (2017). Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena, 158, 63-68. https://doi.org/10.1016/j.catena.2017.06.017
Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A. K., Gupta, H. S., & Mitra, S. (2010). Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutrient Cycling in Agroecosystems, 86, 1-16. https://doi.org/10.1007/s10705-009-9270-y
Blake, G. R., & Hartge, K. H. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods. Arnold Klute 5, 377-382. https://doi.org/10.2136/sssabookser5.1.2ed.c14
Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B. G., Dupraz, C., ... & Chenu, C. (2017). Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems & Environment, 236, 243-255. https://doi.org/10.1016/j.agee.2016.12.011
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
Choudhury, B. U., Fiyaz, A. R., Mohapatra, K. P., & Ngachan, S. (2016). Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North‐Eastern Himalayan Region of India. Land Degradation & Development, 27(4), 1163-1174. https://doi.org/10.1002/ldr.2338
Christensen, B. T. (1992). Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, 20, 1-90. https://doi.org/10.1007/978-1-4612-2930-8_1
Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient. Noise reduction in speech processing, 1-4. https://doi.org/10.1007/978-3-642-00296-0_5
Dahlgren, R. A., Boettinger, J. L., Huntington, G. L., & Amundson, R. G. (1997). Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma, 78(3-4), 207-236. https://doi.org/10.1016/S0016-7061(97)00034-7
Deng, L., Liu, G. B., & Shangguan, Z. P. (2014). Land‐use conversion and changing soil carbon stocks in C hina's ‘Grain‐for‐Green’Program: a synthesis. Global Change Biology, 20(11), 3544-3556. https://doi.org/10.1111/gcb.12508
Dieleman, W. I., Venter, M., Ramachandra, A., Krockenberger, A. K., & Bird, M. I. (2013). Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma, 204, 59-67. https://doi.org/10.1016/j.geoderma.2013.04.005
Don, A., Seidel, F., Leifeld, J., Kätterer, T., Martin, M., Pellerin, S., ... & Chenu, C. (2024). Carbon sequestration in soils and climate change mitigation—Definitions and pitfalls. Global Change Biology, 30(1), e16983. https://doi.org/10.1111/gcb.16983
Dwivedi, D., Riley, W. J., Torn, M. S., Spycher, N., Maggi, F., & Tang, J. Y. (2017). Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biology and Biochemistry, 107, 244-259. https://doi.org/10.1016/j.soilbio.2016.12.019
Fallahi, J., Rezvani Moghaddam, P., Nassiri Mahallati, M., & Behdani, M. A. (2013). Validation of RothC model for evaluation of carbon sequestration in a restorated ecosystem under two different climatic scenarios. Water and Soil, 27(3), 656-668. https://doi.org/10.22067/jsw.v0i0.26092
Farina, R., Coleman, K., & Whitmore, A. P. (2013). Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma, 200, 18-30. https://doi.org/10.1016/j.geoderma.2013.01.021
Field, A. (2024). Discovering statistics using IBM SPSS statistics. Sage publications limited.
Gee, G. W. & Or, D. (2002) Particle Size Analysis. In: Dane, J.H. and Topp, G.C., Eds., Methods of Soil Analysis, Part 4, Physical Methods, Soils Science Society of America, Book Series No. 5, Madison, 255-293.https://doi.org/10.2136/sssabookser5.4.c12
Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy Policy, 36(12), 4317-4322. https://doi.org/10.1016/j.enpol.2008.09.058
Jebari, A., Del Prado, A., Pardo, G., Rodriguez Martin, J. A., & Álvaro‐Fuentes, J. (2018). Modeling regional effects of climate change on soil organic carbon in Spain. Journal of Environmental Quality, 47(4), 644-653. https://doi.org/10.2134/jeq2017.07.0294
Jenkinson, D. S., & Coleman, K. (2008). The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. European Journal of Soil Science, 59(2), 400-413. https://doi.org/10.1111/j.1365-2389.2008.01026.x
Kaczynski, R., Siebielec, G., Hanegraaf, M. C., & Korevaar, H. (2017). Modelling soil carbon trends for agriculture development scenarios at regional level. Geoderma, 286, 104-115. https://doi.org/10.1016/j.geoderma.2016.10.026
Kashi Zenouzi, L., Shafiee, B., & Jafari, A. A. (2016). Investigating the Effect of Some Environmental Factors on Organic Carbon in ZilberChay Watershed. Journal of Water and Soil Science, 20(76), 207-218. [In Persian] http://dx.doi.org/10.18869/acadpub.jstnar.20.76.207
Kaveh, A., Mahdian, M. H., Parvizi, Y., Sokouti Oskouei, R., & Masihabadi, M. H. (2014). Investigating effects of topography, soil and climate factors on soil organic carbon storage in drylands of Kermanshah Province. Desert Management, 2(4), 51-65. [In Persian] https://doi.org/10.22034/jdmal.2014.16659
Kazemi Rad, L., & Mohammadi, H. (2016). Climate change assessment by using LARS-WG model in Gilan Province (Iran). Journal of Geography and Environmental Hazards, 4(4), 55-74. [In Persian] https://doi.org/10.22067/geo.v4i4.38892
Köchy, M., Don, A., van der Molen, M. K., & Freibauer, A. (2015). Global distribution of soil organic carbon–Part 2: Certainty of changes related to land use and climate. Soil, 1(1), 367-380. https://doi.org/10.5194/soil-1-367-2015
Komarov, A., Chertov, O., Bykhovets, S., Shaw, C., Nadporozhskaya, M., Frolov, P., ... & Zubkova, E. (2017). Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing. Ecological Modelling, 345, 113-124. https://doi.org/10.1016/j.ecolmodel.2016.08.007
Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005
Li, J., Shi, J., Zhang, D. D., Yang, B., Fang, K., & Yue, P. H. (2017). Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Climate Dynamics, 48, 649-660. https://link.springer.com/article/10.1007/s00382-016-3101-z
Li, P., Wang, Q., Endo, T., Zhao, X., & Kakubari, Y. (2010). Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests. Geoderma, 154(3-4), 407-415. https://doi.org/10.1016/j.geoderma.2009.11.023
Mansuri, E., Karimi, A., Emamy, H., & Parvizi, Y. (2017). Investigation the Factors affecting soil organic carbon along a gradient climate in Kermanshah Province. Journal of Natural Environment, 70(1), 197-210. https://doi.org/10.22059/jne.2017.134974.1031
Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54(1), 17-24. https://doi.org/10.1080/00031305.2000.10474502
Muñoz-Rojas, M., Abd-Elmabod, S. K., Zavala, L. M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agriculture, Ecosystems & Environment, 238, 142-152. https://doi.org/10.1016/j.agee.2016.09.001
Nemoto, R. (2010). Long-term soil carbon changes in different agricultural management systems under past and future climate. Doctoral dissertation, University of Bern. https://occrdata.unibe.ch/students/theses/msc/35.pdf
Nieto, O. M., Castro, J., & Fernández-Ondoño, E. (2013). Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation. Plant and Soil, 365, 321-335. https://doi.org/10.1007/s11104-012-1395-0
Njeru, C. M., Ekesi, S., Mohamed, S. A., Kinyamario, J. I., Kiboi, S., & Maeda, E. E. (2017). Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Regional, 10, 29-38. https://doi.org/10.1016/j.geodrs.2017.04.002
Papiernik, S. K., Lindstrom, M. J., Schumacher, T. E., Schumacher, J. A., Malo, D. D., & Lobb, D. A. (2007). Characterization of soil profiles in a landscape affected by long-term tillage. Soil and Tillage Research, 93(2), 335-345. https://doi.org/10.1016/j.still.2006.05.007
Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51(5), 1173-1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x
Ponce-Hernandez, R., Koohafkan, P., & Antoine, J. (2004). Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes (Vol. 1). Food & Agriculture Org.
Qiu, W., Li, Q., Lei, Z. K., Qin, Q. H., Deng, W. L., & Kang, Y. L. (2013). The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon, 53, 161-168. https://doi.org/10.1016/j.carbon.2012.10.043
Quideau, S. A. (2002). Organic matter accumulation. Encyclopedia of Soil Science, 26, 1-4.
Ramesh, T., Manjaiah, K. M., Tomar, J. M. S., & Ngachan, S. V. (2013). Effect of multipurpose tree species on soil fertility and CO 2 efflux under hilly ecosystems of Northeast India. Agroforestry Systems, 87, 1377-1388. https://doi.org/10.1007/s10457-013-9645-6
Rampazzo Todorovic, G., Stemmer, M., Tatzber, M., Katzlberger, C., Spiegel, H., Zehetner, F., & Gerzabek, M. H. (2010). Soil‐carbon turnover under different crop management: Evaluation of RothC‐model predictions under Pannonian climate conditions. Journal of Plant Nutrition and Soil Science, 173(5), 662-670. https://doi.org/10.1002/jpln.200800311
Rousta, M. J., Soleimanpour, S. M., Enayati, M., & Pakparvar, M. (2022). Effect of vegetation type and soil chemical properties on the organic carbon content in the soil of flood spreading fields of Kowsar station. https://doi.org/10.52547/ifej.10.19.171
Senthilkumar, S., Kravchenko, A. N., & Robertson, G. P. (2009). Topography influences management system effects on total soil carbon and nitrogen. Soil Science Society of America Journal, 73(6), 2059-2067. https://doi.org/10.2136/sssaj2008.0392
Shakiba, A., & Rahnama, M. (2003). The impact of climate change on soil carbon variations. In Third Regional Conference on Climate Change, Meteorological Organization, Isfahan.[In Persian] https://civilica.com/doc/12499
Shirato, Y., & Yokozawa, M. (2005). Applying the Rothamsted Carbon Model for long-term experiments on Japanese paddy soils and modifying it by simple tuning of the decomposition rate. Soil Science & Plant Nutrition, 51(3), 405-415. https://doi.org/10.1111/j.1747-0765.2005.tb00046.x
Singh, S. K., Pandey, C. B., Sidhu, G. S., Sarkar, D., & Sagar, R. (2011). Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena, 87(1), 78-89. https://doi.org/10.1016/j.catena.2011.05.008
Sinoga, J. D. R., Pariente, S., Diaz, A. R., & Murillo, J. F. M. (2012). Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena, 94, 17-25. https://doi.org/10.1016/j.catena.2011.06.004
Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., ... & Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81(1-2), 153-225. https://doi.org/10.1016/S0016-7061(97)00087-6
Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M., & Francaviglia, R. (2017). Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Science of The Total Environment, 599, 1646-1657. https://doi.org/10.1016/j.scitotenv.2017.05.077
Su, X., Yan, X., & Tsai, C. L. (2012). Linear regression. Wiley Interdisciplinary Reviews: Computational Statistics, 4(3), 275-294. https://doi.org/10.1002/wics.1198
TerraClimate.https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
Wan, Y., Lin, E., Xiong, W., & Guo, L. (2011). Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agriculture, Ecosystems & Environment, 141(1-2), 23-31. https://doi.org/10.1016/j.agee.2011.02.004
Wang, J., Wang, X., Xu, M., Feng, G., Zhang, W., & Lu, C. A. (2015). Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 102, 371-381. https://doi.org/10.1007/s10705-015-9710-9
Yang, Y., Mohammat, A., Feng, J., Zhou, R., & Fang, J. (2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84, 131-141. https://doi.org/10.1007/s10533-007-9109-z
Yokozawa, M., Shirato, Y., Sakamoto, T., Yonemura, S., Nakai, M., & Ohkura, T. (2010). Use of the RothC model to estimate the carbon sequestration potential of organic matter application in Japanese arable soils. Soil Science & Plant Nutrition, 56(1), 168-176. https://doi.org/10.1111/j.1747-0765.2009.00422.x
Zhang, J., Bei, S., Li, B., Zhang, J., Christie, P., & Li, X. (2019). Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Applied Soil Ecology, 136, 67-79. https://doi.org/10.1016/j.apsoil.2018.12.017
Zhang, Y., Ai, J., Sun, Q., Li, Z., Hou, L., Song, L., ... & Shao, G. (2021). Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena, 196, 104872. https://doi.org/10.1016/j.catena.2020.104872
Zhao, Y. G., Liu, X. F., Wang, Z. L., & Zhao, S. W. (2015). Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China. Catena, 133, 303-308. https://doi.org/10.1016/j.catena.2015.05.028
Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S., & Peng, C. (2010). Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123, 439-452. https://doi.org/10.1007/s10265-009-0301-1
Zimmermann, M., Leifeld, J., & Fuhrer, J. (2007). Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology and Biochemistry, 39(1), 224-231. https://doi.org/10.1016/j.soilbio.2006.07.010